Information Operation Across Infospheres: Assured Information Sharing

Prof. Bhavani Thuraisingham and Prof. Latifur Khan
The University of Texas at Dallas

Prof. Ravi Sandhu
George Mason University

August 2006
Acknowledgements

● Students
 - UTDallas
 ● Dilsad Cavus (MS, Data mining and data sharing)
 ● Srinivasan Iyer (MS, Trust management)
 ● Ryan Layfield (PhD, Game theory)
 ● Mehdi (PhD, Worm detection)
 - GMU
 ● Min (PhD, Extended RBAC)
● Faculty and Staff
 - UTDallas
 ● Prof. Murat (Game theory)
 ● Dr. Mamoun Awad (Data mining and Data sharing)
● Project supplemented by Texas Enterprise Funds
Architecture

Data/Policy for Federation

- Export Data/Policy
 - Component Data/Policy for Agency A
 - Component Data/Policy for Agency B
- Export Data/Policy
 - Component Data/Policy for Agency C
Our Approach

- Integrate the Medicaid claims data and mine the data; next enforce policies and determine how much information has been lost by enforcing policies.
- Examine RBAC and UCON in a coalition environment.
- Apply game theory and probing techniques to extract information from non-cooperative partners; conduct information operations and determine the actions of an untrustworthy partner.
- Defensive and offensive operations.
Data Sharing, Miner and Analyzer

- Assume N organizations.
 - The organizations don’t want to share what they have.
 - They hide some information.
 - They share the rest.
- Simulates N organizations which
 - Have their own policies
 - Are trusted parties
- Collects data from each organization,
 - Processes it,
 - Mines it,
 - Analyzes the results
Data Partitioning and Policies

- **Partitioning**
 - Horizontal: Has all the records about some entities
 - Vertical: Has subset of the fields of all entities
 - Hybrid: Combination of Horizontal and Vertical partitioning

- **Policies**
 - XML document
 - Informs which attributes can be released

- **Release factor:**
 - Is the percentage of attributes which are released from the dataset by an organization.
 - A dataset has 40 attributes.
 - “Organization 1” releases 8 attributes
 - RF = 8/40 = 20%
Example Policies

```xml
<?xml version="1.0"?>
<TEST_CASE>
  <BASE_POLICY_DIR>/data/policy/</BASE_POLICY_DIR>
  <!-- make sure to have different tc_id for the bundle -->
  <TC_ID>census_income_5</TC_ID>
  <TEST_CASE_DIR>testcases</TEST_CASE_DIR>
  <NUM_ORG>3</NUM_ORG>
  <RELEASE_FACTOR>5</RELEASE_FACTOR>
  <ATTRIB_XML>attributes.xml</ATTRIB_XML>
  <DATASET_BASE>/data/dataset/census_income/</DATASET_BASE>
  <MANDATORY_ATTRIB>income_type</MANDATORY_ATTRIB>
  <POLICY_XML>gen_org.xml</POLICY_XML>
  <ORG_PREFIX>org_</ORG_PREFIX>

  <!-- information about the dataset -->
  <DATASET_FN>census_income/census_income_50k.dat</DATASET_FN>
  <ARFF_PREFIX>census_income</ARFF_PREFIX>

  <!-- for each testcase bundle, used different test_case_id -->
  <TEST_CASE_ID>census_income_test_5</TEST_CASE_ID>
  <DATASET_PROCESSOR>
    <CLASS_NAME>processors.CensusIncomeProcessor</CLASS_NAME>
    <ATTRIB_FN>census_income/attributes.xml</ATTRIB_FN>
  </DATASET_PROCESSOR>
  <POLICY_DIR>census_policy</POLICY_DIR>
  <DELIM>,</DELIM>
  <TEMPLATE_FN>gen_template.xml</TEMPLATE_FN>
</TEST_CASE>
```
1. Load and Analysis.
 - loads the generated rules,
 - analyzes them,
 - displays in the charts.

2. Run ARM.
 - chooses the arff file
 - Runs the Apriori algorithm,
 - displays the association rules, frequent item sets and their confidences.

3. Process Data Set:
 - Processes the dataset using Single Processing or Batch Processing.
Extension For Trust Management

- Each Organization maintains a Trust Table for Other organization.
- The Trust level is managed based on the quality of Information.
- Minimum Threshold - below which no Information will be shared.
- Maximum Threshold - Organization is considered Trusted partner.
Role-based Usage Control (RBUC)

RBAC with UCON extension

- Users (U)
- Roles (R)
- Operations (OP)
- Objects (O)
- User-Role Assignment (URA)
- Permission-Role Assignment (PRA)
- Permissions (P)
- User Attributes (UA)
- Session Attributes (SA)
- Session Attributes (SA)
- Usage Decisions
- Authorizations (A)
- Obligations (B)
- Conditions (C)
RBUC in Coalition Environment

• The coalition partners may be trustworthy, semi-trustworthy, or untrustworthy, so we can assign different roles to the users (professor) from different infospheres, e.g.
 - professor role,
 - trustworthy professor role,
 - semi-trustworthy professor role,
 - untrustworthy professor role.

• We can enforce usage control on data by setting up object attributes to different roles during permission-role-assignment, e.g.
 - professor role: 4 times a day,
 - trustworthy role: 3 times a day
 - semi-trustworthy professor role: 2 times a day,
 - untrustworthy professor role: 1 time a day.
Coalition Game Theory

Players

<table>
<thead>
<tr>
<th>P<sub>i</sub></th>
<th>(P_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tell Truth</td>
<td>(A)</td>
</tr>
<tr>
<td>Lie</td>
<td>(B - M(p_j^i(\text{verify})))</td>
</tr>
</tbody>
</table>

Expected Benefit from Strategy

- \(A \): Value expected from telling the truth
- \(B \): Value expected from lying
- \(M \): Loss of value due to discovery of lie
- \(L \): Loss of value due to being lied to
- \(p_j^i(\text{action}) \): Perceived probability by player \(i \) that player \(j \) will perform action
- \(\text{fake} \): Choosing to lie
- \(\text{verify} \): Choosing to verify
Coalition Game Theory

- Results
 - Algorithm proved successful against competing agents
 - Performed well alone, benefited from groups of likeminded agents
 - Clear benefit of use vs. simpler alternatives
 - Worked well against multiple opponents with different strategies

- Pending Work
 - Analyzing dynamics of data flow and correlate successful patterns
 - Setup fiercer competition among agents
 - Tit-for-tat Algorithm
 - Adaptive Strategy Algorithm (a.k.a. Darwinian Game Theory)
 - Randomized Strategic Form
 - Consider long-term games
 - Data gathered carries into next game
 - Consideration of reputation (‘trustworthiness’) necessary
Detecting Malicious Executables

The New Hybrid Model

What are malicious executables?

Virus, Exploit, Denial of Service (DoS), Flooder, Sniffer, Spoof, Trojan etc.

Exploits software vulnerability on a victim, May remotely infect other victims

Malicious code detection: approaches

Signature based: not effective for new attacks

Our approach: Reverse engineering applied to generate assembly code features, gaining higher accuracy than simple byte code features

Executable Files → Hex-dump → Byte-Codes → n-grams → Feature vector (n-byte sequences)

Select Best features using Information Gain → Replace byte-code with assembly code

Feature vector (Assembly code Sequences) → Machine-Learning

Malicious / Benign?