Information Operation Across Infospheres: Assured Information Sharing

1

Prof. Bhavani Thuraisingham and Prof. Latifur Khan The University of Texas at Dallas

> Prof. Ravi Sandhu George Mason University

> > August 2006

Acknowledgements

- Students
 - UTDallas
 - Dilsad Cavus (MS, Data mining and data sharing)
 - Srinivasan lyer (MS, Trust management)
 - Ryan Layfield (PhD, Game theory)
 - Mehdi (PhD, Worm detection)
 - GMU
 - Min (PhD, Extended RBAC)
- Faculty and Staff
 - UTDallas
 - Prof. Murat (Game theory)
 - Dr. Mamoun Awad (Data mining and Data sharing)
- Project supplemented by Texas Enterprise Funds

Architecture

Our Approach

- Integrate the Medicaid claims data and mine the data; next enforce policies and determine how much information has been lost by enforcing policies
- Examine RBAC and UCON in a coalition environment
- Apply game theory and probing techniques to extract information from non cooperative partners; conduct information operations and determine the actions of an untrustworthy partner.
- Defensive and offensive operations

Data Sharing, Miner and Analyzer

- Assume N organizations.
 - The organizations don't want to share what they have.
 - They hide some information.
 - They share the rest.
- Simulates N organizations which
 - Have their own policies
 - Are trusted parties
- Collects data from each organization,
 - Processes it,
 - Mines it,
 - Analyzes the results

Data Partitioning and Policies

- Partitioning
 - Horizontal: Has all the records about some entities
 - Vertical: Has subset of the fields of all entities
 - Hybrid: Combination of Horizontal and Vertical partitioning
- Policies
 - XML document
 - Informs which attributes can be released
- Release factor:
 - Is the percentage of attributes which are released from the dataset by an organization.
 - A dataset has 40 attributes.
 - "Organization 1" releases 8 attributes
 - RF=8/40=20%

Example Policies

```
<?xml version="1.0"?>
  <TEST CASE>
    <BASE POLICY DIR>/data/policy/</BASE POLICY DIR>
    < --- make sure to have different tc id for the bundle -->
    <TC ID>census income 5</TC ID>
    <TEST CASE DIR>testcases</TEST CASE DIR>
    <NUM ORG>3</NUM ORG>
    <RELEASE FACTOR>5</RELEASE FACTOR>
    <ATTRIB XML>attributes.xml</ATTRIB XML>
    <DATASET BASE>/data/dataset/census income/</DATASET BASE>
    <MANDATORY ATTRIB>income type</MANDATORY ATTRIB>
    <POLICY XML>gen org.xml</POLICY XML>
    <ORG PREFIX>org </ORG PREFIX>
     <!-- information about the dataset -->
     <DATASET FN>census income/census income 50k.dat</DATASET FN>
     <ARFF PREFIX>census income</ARFF PREFIX>
     < --- for each testcase bundle, used different test case id -->
     <TEST_CASE ID>census income test 5</TEST_CASE_ID>
     <DATASET PROCESSOR>
       <CLASS NAME>processors.CensusIncomeProcessor</CLASS NAME>
       <ATTRIB FN>census income/attributes.xml</ATTRIB FN>
     </DATASET PROCESSOR>
     <POLICY DIR>census policy </POLICY DIR>
     <DELIM>, </DELIM>
     <TEMPLATE FN>gen template.xml</TEMPLATE FN>
  </TEST CASE>
```

Processing

4 /		
	Main GUI	
	Load & Analysis	
	Run ARM	
	Process Dataset	

- 1. Load and Analysis.
 - loads the generated rules,
 - analyzes them,
 - displays in the charts.
- 2. Run ARM.
 - chooses the arff file
 - Runs the Apriori algorithm,
 - displays the association rules, frequent item sets and their confidences.
- 3. Process DataSet:
 - Processes the dataset using Single Processing or Batch Processing.

Extension For Trust Management

- Each Organization maintains a Trust Table for Other organization.
- The Trust level is managed based on the quality of Information.
- Minimum Threshold- below which no Information will be shared.
- Maximum Threshold Organization is considered Trusted partner.

Role-based Usage Control (RBUC)

RBAC with UCON extension

RBUC in Coalition Environment

The coalition partners maybe trustworthy), semi-trustworthy) or untrustworthy), so we can assign different roles on the users (professor) from different infospheres, e.g.
professor role,
trustworthy professor role,
semi-trustworthy professor role,
untrustworthy professor role.

•We can enforce usage control on data by set up object attributes to different roles during permission-role-assignment, •e.g. professor role: 4 times a day, trustworthy role: 3 times a day semi-trustworthy professor role: 2 times a day,

untrustworthy professor role: 1 time a day

Coalition Game Theory

Coalition Game Theory

- Results
 - Algorithm proved successful against competing agents
 - Performed well alone, benefited from groups of likeminded agents
 - Clear benefit of use vs. simpler alternatives
 - Worked well against multiple opponents with different strategies
- Pending Work
 - Analyzing dynamics of data flow and correlate successful patterns
 - Setup fiercer competition among agents
 - Tit-for-tat Algorithm
 - Adaptive Strategy Algorithm (a.k.a. Darwinian Game Theory)
 - Randomized Strategic Form
 - Consider long-term games
 - Data gathered carries into next game
 - Consideration of reputation ('trustworthiness') necessary

Detecting Malicious Executables The New Hybrid Model

What are malicious executables?

Virus, Exploit, Denial of Service (DoS), Flooder, Sniffer, Spoofer, Trojan etc. Exploits software vulnerability on a victim, May remotely infect other victims

Malicious code detection: approaches

Signature based : not effective for new attacks

Our approach: Reverse engineering applied to generate assembly code features, gaining higher accuracy than simple byte code features

