
Information Operations  
Across Infospheres 

 
Annual Report 

 
Prepared by 

 
The University of Texas at Dallas 

 
Submitted to: 

Air Force Office of Scientific Research 
 

November 30, 2008 
 

Under  
Contract: FA9550-06-1-0045 

 
 

Period of Performance:  
December 1, 2007 – November 30, 2008 

 
Subcontractor: 

The University of Texas  
at San Antonio 

 



EXECUTIVE SUMMARY OF PROJECT 
 

There is a critical need for organizations to share data within and across infospheres and 

form coalitions so that analysts could examine the data, mine the data, and make effective 

decisions. Each organization could share information within its infosphere. An infosphere 

may consist of the data, applications and services that are needed for its operation. 

Organizations may share data with one another across what is called a global infosphere 

that spans multiple infospheres. It is critical that the war fighters get timely information. 

Furthermore, secure data and information sharing is an important requirement. The 

challenge is for data processing techniques to meet timing constraints and at the same time 

ensure that security is maintained.  

This proposal addresses information operations across infospheres. We first describe secure 

timely data sharing across infospheres and then focus on Role-based access control and 

Usage control in such an environment. Our goal is to send timely information to the war 

fighter while maintaining security. We will also address the application of game theory as 

well as decision centric data mining techniques to extract information from both 

trustworthy and untrustworthy partners of the coalition.  

In particular, the objectives of this project are as follows: 

• Develop a Framework for Secure and Timely Data Sharing across Infospheres. 

• Investigate Access Control and Usage Control policies for Secure Data Sharing. 

• Develop innovative techniques for extracting information from trustworthy and 

untrustworthy partners.  

Technical Merit: While there has been work on data sharing across coalitions, an in-depth 

investigation of security issues as well as a study of the tradeoffs between security and 

timely processing has yet to be carried out. To our knowledge, this project is the first to 

investigate sophisticated security techniques such as Usage Control as well as decision 

centric data mining techniques for timely and secure data sharing across coalitions.  

Broader Impact: The research to be carried out on this project is directly applicable to 

Network Centric Operations (NCO) that implement Network Centric Warfare (NCW). 

NCW promotes information sharing, shared situational awareness and knowledge of 

commander’s intent. In addition it also enables war fighting advantage by providing 

synchronization, speed of command and increased combat power. We focus mainly on 

information sharing aspects of NCW. In particular, the results of this project can be 

transferred to the timely and secure data sharing services of the Network Centric Services 

activity being carried out by the Department of Defense.  

Research Team: The research will be carried out both at the University of Texas at Dallas 

and at George Mason University. The principal investigators are among the leading 

researchers in Data and Applications Security. They have conducted innovative research in 

Secure Database Design, the Inference Problem, Role-based Access Control and Usage 

Control techniques as well as and carried out technology transfer activities. They are 

Fellows of IEEE, ACM, AAAS and the British Computer Society and have received 

prestigious awards for their research in Data and Applications Security.  



 

ABSTRACT OF ANNUAL REPORT 
 

The research reported in this annual report was carried out mainly at the University of 

Texas at Dallas (UTD) between December 1, 2007 and November 30, 2008.   It describes 

the issues and challenges for information operations across infospheres and focuses on 

assured information sharing. We have examined three models: In the first model the 

partners of the coalition are considered to be trustworthy. In the second model, the 

partners are semi-trustworthy. In the third model the partners are untrustworthy.  

 

The report essentially consists of three parts. We first provide an introduction to the 

project as well as the developments during Year 3. Impact of this work is also discussed. 

This introduction was also presented at the AFOSR review in June 2008.  In the case of 

trustworthy models we conducted experiments on data sharing vs. data policy 

enforcement and developed a prototype system during Year 1 and Year 2. During Year 3 

we have developed an approach for group-based information sharing (Part 1). For the 

semi-trustworthy model we enhanced the research carried out during Year 1 and Year 2. 

We examined the use of game theory for extracting information from the partners and 

demonstrated with bioterrorism applications in Year 3 (Part II). For the untrustworthy 

model, we examined the use of data mining for defensive operations during Year 1 and 

Year 2. We continued with this research and developed new tools (Part III.A). In 

addition, we also designed techniques to handle offensive (i.e. active defense) operations 

(Part III.B).  

 

George Mason University (GMU) received a subcontract from the University of Texas at 

Dallas to examine the use of Role-based Access Control (RBAC) and Usage Control 

models for Coalition data sharing. The PI moved to UTSA and received the next phase of 

the funding to work on group-based information sharing (Part 1).  

 

While this report discusses the developments during Year 3 of the project, it is also the 

final report for the project.  
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INTRODUCTION 

 
1. Problem and Objectives 

There is a critical need for organizations to share data within and across infospheres and 

form coalitions so that analysts could examine the data, mine the data, and make effective 

decisions. Each organization could share information within its infosphere. An infosphere 

may consist of the data, applications and services that are needed for its operation. 

Organizations may share data with one another across what is called a global infosphere 

that spans multiple infospheres. It is critical that the war fighters get timely information. 

Furthermore, secure data and information sharing is an important requirement. The 

challenge is for data processing techniques to meet timing constraints and at the same time 

ensure that security is maintained.  

This proposal addresses information operations across infospheres. We first describe secure 

timely data sharing across infospheres and then focus on Role-based access control and 

Usage control in such an environment. Our goal is to send timely information to the war 

fighter while maintaining security. We will also address the application of game theory as 

well as decision centric data mining techniques to extract information from both 

trustworthy and untrustworthy partners of the coalition.  

In particular, the objectives of this project are as follows: 

• Develop a Framework for Secure and Timely Data Sharing across Infospheres. 

• Investigate Access Control and Usage Control policies for Secure Data Sharing. 

• Develop innovative techniques for extracting information from trustworthy and 

untrustworthy partners.  

2. Our Approach 

We developed three classes of solutions to handle the different types of partners. For 

trustworthy partners we developed solutions for policy based information sharing. For 

semi-trustworthy partners we applied game theoretic techniques to extract as much 

information as possible from the partners. For untrustworthy partners we protected our 

systems by providing solutions to malicious code detection. In addition, we also designed 

an approach to carry out active defensive (i.e. offensive) operations.  

 

3. Our Contributions 

This is the final report for the project. The contents of this report describe our 

research during Year 3. In this section we discuss our solutions for handling all three 

types of partners and mention the contributions during each year. 

 



To handle trustworthy partners we first determined the amount of information that is lost 

when policies are enforced (report 1). We introduced the notion of release factor and 

showed that the amount of information lost decreases with release factor. We also 

conducted simulation experiments for policy based information sharing (report 1). Next 

we developed a proof of concept prototype that demonstrated policy based information 

sharing. We utilized medical databases and applications (report 2). In addition we also 

developed an approach to assign trusts levels to the partners in a peer to peer information 

sharing environment (report 2). Finally our subcontractor (initially at GMU and then at 

UTSA) has developed the idea of group-based information sharing where documents as 

well as members join and leave the coalition. The usage control model was extended to a 

group-based environment (report 3 – that is, this report). 

To handle semi-trustworthy partners, we explored game theoretic techniques. Our goal is 

to extract as much information as possible from out partners and not divulge any of our 

information. During the first two years we conducted simulation studies using various 

types of games (report 1 and report 2). During Year 3 we applied the techniques to a 

bioterrorism attack (report 3). The goal of our work was to apply proven human-oriented 

situation analysis with existing simulation techniques to explore new ways of enhancing 

security through anticipation of human thought processes and activity.  In particular, we 

used social networking to model relationships and game theory to model motivations of 

those participating. The end result of these studies yielded a combination of methods to 

anticipate, plan for, and reduce the impact of a biological attack.  The SIR model was 

modified and applied to an individual-level social network through the use of theatres and 

approximated influences due to relationships, creating a unique, high performance 

mathematical model to observe the spread of disease.  This model was then simulated in a 

number of scenarios spanning the use of possible attack situations, inoculations, and 

several novel intervention methods.  The results of the simulation were then analyzed as a 

Stackelberg game in order to search for a lower bound to the expected costs and loss of 

human life under the assumption that the attacker goes last. 

To handle untrustworthy partners we explored mainly defensive operations. Here we 

applied data mining techniques for malicious code detection (report 1 and report 2). 

During Year 3 we continued to apply data mining techniques for botnet detection (report 

3). In addition we also designed techniques for offensive operations where the viruses 

that we develop will change patterns when new patches are introduced (report 3). We 

propose to enhance the design in our follow-on proposal that will focus on offensive 

operations. 

3. Significant Outcomes 

The total budget for this project is 300K from AFOSR and 150K in matching funds from 

the State of Texas. (i) One significant outcome of our research is the one pager we 

submitted to AFOSR on assured information sharing. This one pager was released as a 

MURI BAA in 2007 and subsequently AFOSR has made two multimillion dollar awards. 

(ii) We have also made presentations of our results to various air force bases through 

AFCEA including Edwards AFB and Kirkland AFB in 2006. (iii) We have also presented 

our research to other agencies and now have contracts and grants with NGA for 

geospatial semantic web and with IARPA to solve challenging problems in semantic 

web. (iv) We have published several papers in high quality journals and conferences and 



have given keynote addresses including at the IEEE Intelligence and Security Informatics 

Conference in 2008. (iv) Finally this research has developed a new area in data and 

applications security and that is on inventive based information sharing. We will further 

develop these ideas under our MURI project.  

4. Impact on Theses and Education 

This project had a major impact on MS/PhD degrees and courses. The research has 

provided support for the PhD Thesis research of Ryan Layfield who has successfully 

defended his thesis (graduation December 2008) on applying game theory for 

information sharing (report 3). Ryan started his PhD work in the Spring of 2005 just 

before this project began. In addition it has also supported the PhD Thesis of Mehedy 

Masud on Data Mining for Cyber Security Applications (to graduate in 2009). Nathalie 

Tsybulnik was partially supported by this project for her PhD to develop techniques for 

assigning trust levels in a peer to peer environment. A PhD student at GMU/UTSA was 

also supported by this project on group-based information sharing. Several MS students 

have contributed to the programming projects. In particular Yashaswini Harshakumar 

developed the prototype for policy based information sharing Dilsad Cavus worked on 

examining the amount of information that is lost by enforcing policies. Srinivas 

developed simulation experiments on assured information sharing.  

Mamoun Awad, a post-doctoral researcher was particularly supported by the project to 

supervise the experiments carried out during the first year of the project. The professors 

who have advised the students are: Bhavani Thuraisingham, Latifur Khan, Murat 

Kantarcioglu and Kevin Hamlen at UTD and Ravi Sandhu at UTSA. 

In addition to incorporating units on information sharing to courses taught at AFCEA, we 

are also introducing a new graduate level course on data mining for cyber security 

applications. We have incorporated several units based on this research to our course in 

data and applications security.  

5. Organization of this Report. 

This report describes mainly the research that was carried out during year 3 of the project. 

The first paper is on group-based information sharing. The second paper is on applying 

game theory for information sharing with bioterrorism as an application. The third paper 

is a collection of papers that describe our research on applying data mining techniques for 

defensive operations. The fourth paper is our approach for handling offensive operations.  
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Policy-based Information Sharing 
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1 Introduction and Background

Sharing information while protecting it is one of the earliest problems to be recognized in computer security, and yet

remains a challenging problem to solve. Classic access control models are either inherently weak or do not even address

this problem domain. The Discretionary Access Control model or DAC as discussed in [7, 9, 4] is fundamentally limited

in that they control access only to original objects but not to copies. If objects could be read, one can read and create a

copy and own this object. Mandatory Access Control models or MAC (like Bell-Lapadula) as discussed in [6] address

information flow but are too rigid for fine-grained access control and falling back to DAC for fine-grained access control

as the Orange Book suggests [4] is pointless.

We introduce and formalize the concept of Group-Centric Secure Information Sharing (g-SIS). Designers of security

systems have traditionally made a distinction between security policy and mechanism. The general goal has been

to build flexible and robust mechanisms that can conveniently support a wide range of policies. We follow the Policy,

Enforcement, Implementation or PEI framework [12] (see figure 1) in distinguishing three separate but related models for

the g-SIS problem: Policy Models which focus on subjects, objects and authorization policies for access, Enforcement

Models which additionally accommodate trusted servers and authorities and thereby facilitate specification of protocols

amongst these entities and Implementation Models which realize the enforcement model with specific software, system

and cryptographic modules and algorithms. Note that a single Policy Model may have one or more Enforcement Models

each of which may have one or more Implementation Models that realize the same set of objectives.

Such a layered approach allows us to focus on questions that are relevant to the respective layer and at a right level of

abstraction. For example, at the Policy layer, we are primarily concerned with a subject’s privileges on an object and not

on Access Control Lists (ACLs). It is more appropriate to push this question of whether to use ACLs or Capability Lists

to realize the policy to the Enforcement Layer. This enables us to study important aspects of the policy model without

getting side-tracked by enforcement and implementation level issues. Another important aspect of the PEI framework

is that the designer needs to always make a trade-off when transitioning from one layer to another. For instance, is a

distributed setting, we suggest that an Enforcement Model is always an approximation of the Policy Model. Consider

a distributed system with a policy that a subject can never access an object after 5PM. We call this an “ideal” policy

because it assumes that there is no time delay in propagation of authorization information (the current time in this

example). In the Enforcement Layer, as a practical matter, the designer needs to make a trade-off and approximate this

“ideal” policy. One such approximation could be that in the given enforcement model, the subject can never access an

object after 5PM with an accuracy of ± 5ms (thereby accounting for network delay).

The traditional approach to information sharing, characterized as Dissemination-Centric Sharing in this report, fo-

cuses on attaching attributes and policies to an object as it is disseminated from producers to consumers in a system.

These policies are sometimes described as being “sticky”. As an object is disseminated further down a supply chain

the policies may get modified, such modification itself being controlled by existing policies. This mode of information
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Figure 1: The PEI Models Framework.

sharing goes back to early discussions on originator-control systems [8, 10, 5, 11] in the 1980’s and Digital Rights

Management in the 1990’s and 2000’s. XrML [1], ODRL [3] and XACML [2] are recent examples of policy languages

developed for this purpose. Dissemination-Centric Sharing describes in advance the characteristics or properties of

subjects who may access the object by attaching “sticky policies” to be enforced when a subject attempts to access the

object.

The vision of Group-Centric Sharing differs in that it advocates bringing the subjects and objects together to facilitate

sharing. The metaphor is that of a secure meeting room where participants and information come together to enable the

participants to “share” information for some common purpose. This common purpose can range from collaboration on

a specific goal-oriented task (such as designing a new product) to participation in a shared activity (such as a semester

long class) to subscription to a magazine (where the publisher contributes information that the participants read and

possibly respond to content in associated blogs and forums). Visualize a conversation room where users may join,

leave and re-join but only hear the conversation occurring during their participation period. For instance, in a Program

Committee meeting Alice may be excused from the room when her paper is being discussed and may re-join the room

after that portion of the discussion has concluded. In doing so, the conversation that occurred during her absence is not

accessible to her. In another setting, all conversations are recorded on a whiteboard in the room and as Alice re-joins

she is able to see what happened during her absence. Such a room may also be appropriate in a different context such

as a design group wherein Alice participates as a consultant on demand. Further, Alice may view all the contents on

the whiteboard while participating but may not be allowed to access the contents after she leaves the room. In another

scenario, when Alice leaves, she may be allowed to retain access to the discussions in which she participated. We

envision that Dissemination-Centric and Group-Centric Sharing will co-exist in a mutually supportive manner. For

example, objects could be Added with “sticky” policies in a Group-Centric model. In this case, the objects may have

controls imposed by both the group-centric model and the “sticky policies”.

2 Overview

In this report, we confine our attention to Policy and Enforcement Models for g-SIS. Specifically, at the Policy Layer,

we develop the foundations for a theory of Group-Centric Information Sharing, characterize a specific sub-family of

models in this arena and identify several directions in which this theory can be extended. We propose an abstract set

of group operations: Join and Leave for subjects, Add and Remove for objects. Subjects may Join, Leave and re-Join

the group. Similarly, objects may be Added, Removed and re-Added to the group. An authorization policy is specified

based on the relative membership period of the subject and object in question.

Clearly there has to be some control and authorization of each of these group operations. Rules concerning who

can Join a group and who can authorize the Join are critical to security of the information sharing achieved via the

group, and likewise for the other operations. Such issues are typically addressed as administrative tasks expressed in

an administrative model. We leave the development of such an administrative model for future work. In this report, we

focus solely on the operational aspects that bear on group membership. Furthermore, we confine our attention to correct
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Figure 2: Subject and object membership states. Figure 3: Layered g-SIS Properties.

authorization behavior with respect to “Read” access. The techniques can be extended easily to other forms of accesses

as needed.

At the Enforcement Layer, we develop a flexible architecture that can realize any type of g-SIS policy. The com-

ponents of this architecture such as the authorization information, decision and enforcement points are physically dis-

tributed across various computer systems. As noted earlier, in such a distributed setting, it is inevitable that authorization

decisions will be based on authorization information that are stale or time-delayed. In a theoretical sense, some stal-

eness is inherent in the intrinsic limit of network latencies. In a practical sense, authorization information is typically

cached at the authorization decision point and refreshed periodically with the authorization information point. For the

purpose of this report, we assume that attributes are the only carriers of authorization information and use these two

terms interchangeably.

Given that the use of stale attributes is inevitable, the question is how do we safely use stale attributes for access

control decisions and enforcement? Our central contribution at the enforcement layer is to formalize this notion of “safe

use of a stale property” in the specific context of g-SIS. We also demonstrate specifications of systems that do and do

not satisfy this requirement. We believe that the requirements for “safe use of a stale property” identified in this layer

represent fundamental security properties the need for which arises in virtually any secure distributed systems in which

the management and representation of authorization state is not centralized. We now present a high-level overview of

g-SIS policy models in section 3 and the enforcement models and stale-safe properties in section 4.

3 Policy Model for g-SIS

Subjects and objects in a group go through various states as shown in figure 2. Different access policies are possible

depending on the relative state of subjects and objects. For example, a joining subject could be allowed access only to

new objects or also to objects that currently exist in the group. Similarly, a past subject may lose access to all objects

or retain access to objects authorized during his membership period. When a subject rejoins the group, he may either

gain access to objects authorized during his past membership or simply join the group as a new subject. Similarly, many

different object policies are possible. Each group may thus pick a specific set of group-level access policies for subjects

and objects.

3.1 Layered g-SIS properties

A g-SIS policy model is a Finite State Machine (FSM) that responds to sequences of group events (Join, Leave,

Add and Remove) and determines at each state what read requests would be authorized should they occur. Each of

these group operations (Join, Leave, Add and Remove) could be of various types—characterized as Lossy/Lossless,

Restorative/Non-Restorative, Strict/Liberal, etc. We take a layered approach in developing the g-SIS policy models.

First we have Core or Level 0 properties that any g-SIS model should satisfy regardless of the additional properties that

it may support at Levels 1 or 2. A model is admitted as g-SIS only if it satisfies all of the core properties. Next, we have

Level 1 properties that are based on specific variations of group operations. At level 1, we propose that group operation

variations be fixed for all subjects in a given g-SIS model. That is, a g-SIS model should pick a specific subset of Level
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1 properties that it wants to support depending on the requirements posed by the application. However, this subset may

vary from one model to another. Finally, Level 2 properties are based on specific variations of Level 1 group operations.

Unlike Level 1 properties, a g-SIS model is free to dynamically choose any variation of Level 2 group operations. We

informally discuss these three layers below.

3.2 Core or Level 0 Properties

A g-SIS policy model should satisfy all of the following core properties.

• Overlapping Membership (Simultaneity) Property: This property states that a subject may access an object

only if both the subject and object were simultaneously members of the group at some point in time.

• Persistence Properties: These properties state that authorization value (True, False) can change only when a

group event such as Join, Leave, Add or Remove occurs (for the subject and object in question).

• Liveness Property: When a subject joins a group any object that is added to the group after Join time must

be authorized unless the subject or object exits the group. This is a Liveness Property because it specifies the

conditions under which authorization must succeed.

• Safety Properties: The safety properties specify the conditions under which a subject cannot access an object.

They specify conditions in which authorization must be denied. For example, if an object is added to the group for

the first time after the subject leaves, the subject will not be authorized unless he/she re-joins the group. Similarly,

the set of all objects that a subject can access during non-membership period is bounded at Leave time. This set

cannot grow until the subject rejoins the group.

3.3 Level 1 Properties

A g-SIS policy model should fix a specific set of group operations that it wants to support from the following list. For

example, for every subject in the group, the g-SIS model may support Lossless Join, Gainless Leave, Non-Restorative

Join and Leave.

• Lossless Vs Lossy Join: In a Lossless Join operation, when joining a group the subject never loses his/her

authorizations granted prior to Join (non-membership period). In Lossy Join, the subject may be required to lose

some prior authorizations at Join time. This is useful in specifying separation of duty kinds of policies.

• Non-Restorative Vs Restorative Join: These operations apply in the context of subject rejoin. In Non-Restorative

Join, at Join time, authorizations granted during past membership period(s) may not be restored. In Restorative

Join, at Join time, past authorizations are restored. Restorative Join is useful when an incentive is to be given to

Join a group such as in subscription models.

• Gainless Vs Gainful Leave: In Gainless Leave, after leaving the group, the subject cannot access any object that

was not authorized during the most recent membership period. In Gainful Leave, the subject gain the authoriza-

tions granted during past membership period(s).

• Non-Restorative Vs Restorative Leave: In Non-Restorative Leave, authorizations prior to joining the group

may not be restored. In Restorative Leave, authorizations prior to joining the group are restored.

3.4 Level 2 Properties

A g-SIS model is allowed to use any of the following operations for subjects and objects. In general, Strict operations

are more restrictive than their Liberal counter-parts.

• Strict Vs Liberal Join: On Strict Join (SJ), the subject may only access objects added after Join time. In Liberal

Join (LJ), the joining subject, in addition, may access objects added prior to Join time.

• Strict Vs Liberal Leave: On Strict Leave (SL), the subject loses access to objects authorized during membership

period. In Liberal Leave (LL), the leaving subject may retain authorizations granted during membership period.

4



Figure 4: A family of g-SIS models: The Cartesian product of Subject and Object Model results in a lattice of 16 g-SIS

models with fixed operation types (products are ordered pointwise).
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Figure 5: g-SIS Architecture.

• Strict Vs Liberal Add: On Strict Add (SA), the added object may only be accessed by existing group subjects

at Add time. In Liberal Add (LA), the object may be accessed both by exiting and future subjects.

• Strict Vs Liberal Remove: On Strict Remove (SR), the removed object cannot be accessed by any group subject.

On Liberal Remove (LR), subjects who had access at Remove time may continue to access.

Given that Level 1 properties are fixed, a g-SIS model allows four group operations: (Join, Leave, Add, Remove).

If the type of Level 2 operations are also fixed for all subjects and objects (i.e. a specific type of operation is applied

for all group subjects and objects), there are 16 possible models ranging from the most restrictive model allowing only

Strict operations: (SJ, SL, SA, SR) to the most permissive model allowing only Liberal operations: (LJ, LL, LA, LR).

This is illustrated in figure 4. Parts (a) through (d) show that the Strict operation is more restrictive than the Liberal

operation. Parts (e) and (f) show the subject and object model that is obtained by the Cartesian product of subject and

object operations respectively. Finally, a lattice of 16 g-SIS models can be obtained by a Cartesian product of subject and

object models (parts (e) and (f)). An authorization policy exists for each of these 16 models that specify the conditions

under which a subject may access an object. On the other hand, a highly flexible g-SIS model could simply allow

different types of operations on a case by case basis. For example, SJ for s1, LJ when s1 re-joins, LJ for s2, LL for s1,

SL for s2, SJ when s2 re-joins, etc. (similarly for objects). In this case, we have one all encompassing authorization

policy that specifies the conditions under which a subject may access an object.

4 g-SIS Enforcement Model

Figure 5 shows a generic g-SIS architecture. A Group Administrator (GA) controls group membership for subjects and

objects. A Control Center (CC) acts as a server that is responsible for maintaining subject and object attributes such as
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Figure 6: Events on a time line illustrating staleness leading to access violation.

Join TS, Leave TS, Add TS and Remove TS which represent the corresponding event time. Thus the CC acts as a

Authorization Information Point in g-SIS. We assume the presence of a Trusted Reference Monitor (TRM) on the access

machines which the subjects use to access objects. That is the TRM acts as the Authorization Decision Point. Thus all

interactions in figure 5 are mediated by the TRM in the subject’s access machine. We also assume that objects need not

be always obtained from the server every time the subject needs to access. They are encrypted with a group key (gKey)

and can be downloaded and stored locally either from the server or from other subjects. The resident TRM will decrypt

only if the subject is allowed to access the object as per the group policy.

In steps 1.1-1.2, a non-group subject gets authorization from the GA to join the group. In steps 1.3-1.4, this subject

gets the group attributes from the CC. Thereafter, the TRM (step 2) can make access decisions based on the local copy

of subject and object attributes. The TRM periodically refreshes the local copy of attributes with the CC (steps 3.1-3.2).

This refresh could be triggered based on a timeout or other mechanisms such as a usage count on the number of times

objects may be accessed. In the mean time, the GA may update subject and object attributes at the CC (steps 4.1-4.2).

For example, the subject may be removed from the group by setting his/her Leave TS. This updated attribute value is

copied to the TRM at refresh time (during steps 3.1-3.2). Similarly, the group policy may also be updated by the GA

(steps 5.1-5.2). In summary, the g-SIS system may be characterized as below:

Subject attributes {id, Join TS,Leave TS,ORL, gKey}
Object attributes {id, Add TS}.

Refresh Time (RT) TRM contacts CC to refresh subject attributes and ORL.

Access Policy Authz(S, O, R) → O /∈ ORL ∧ Leave TS(S) = NULL ∧ Join TS(S) ≤ Add TS(O).

Note that the Add TS attribute is part of the object itself. But since multiple copies of the same object may be scattered

across various systems, we use an Object Revocation List (ORL) to Remove an object. The ORL lists the object id and

the corresponding Add TS and Remove TS of the object to be removed thereby indicating the time at which the object

is removed. As mentioned earlier, an authorization policy in g-SIS is based on relative membership period of the subject

and object. For our discussion, we will use Authz specified above which states that a subject can access an object if the

object was added after the subject joined the group and both the subject and object are still current members. Note that

this is the same as the (SJ, SL, LA/SA, SR) model in figure 4 in the policy layer.

4.1 Stale-Safety

When discussing the PEI framework we pointed out that the enforcement model is always an approximation of the

policy model. Let us discuss one approximation that needs to be made in g-SIS. At the policy layer, we assumed instant

revocation. However, in the Enforcement Model in figure 5, it takes a refresh to update this revocation information at the

TRM. Thus until a timeout occurs at the TRM (at which point attribute values are synchronized with the CC), the subject

may continue to access the object even though it may not be authorized as per the up-to-date authorization information

available at the CC. In a way, we can assume that access decision at the TRM is always based on stale attributes. While

it may not be practical to eliminate staleness due to inherent network latencies and more importantly due to limited

refresh cycles in large distributed systems, it is possible to limit the access violations due to staleness of authorization

information.

Figure 6 shows one sample trace in g-SIS that leads to access violation due to attribute staleness. Subject S1 joins

the group and the attributes are refreshed with the CC periodically. RT represents the time at which refreshes happen.

The time period between any two RT’s is a Refresh Window, denoted RWi. After join, RW0 is the first window, RW1

is the next and so on. Suppose RW4 is the current Refresh Window. Objects O1 and O2 were added to the group by

some group subject (or the GA) during RW2 and RW4 respectively and they are available to S1 via super-distribution.
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In RW4, S1 requests access to O1 and O2. An access decision will be made by the TRM in the access machine as per

the attributes obtained at the latest RT.

Clearly, our access policy will allow access to both O1 and O2. However it is possible that S1 was removed by the

GA right after the last RT and before Request(S1, O1, access) in RW4. Ideally, S1 should not be allowed to access both

O1 and O2.

From a confidentiality perspective in information sharing, granting S1 access to O1 is relatively less of a problem

than granting access to O2. This is because the CC or the GA can assume that S1 was always authorized access to O1

and hence information has already been released to S1. In the worst case, S1 continues to access the same information

(O1) until the next RT. However, S1 never had an authorization to access O2 and letting S1 access O2 means that S1

has gained knowledge of new information. This is a critical violation and should not be allowed. Such scenarios are

what our stale-safe security properties address. A subject cannot access an object if it was added to the group after the

last refresh time even if the authorization policy allows access.

Informally, we have two versions of stale-safe security properties that a g-SIS enforcement model should satisfy—

Weak and Strong. The Weak Stale-Safe Security Property allows safe access decisions to be made without having to

contact the CC when a request is received. This property requires that the subject may access any object during a refresh

window if it was authorized at the time of refresh. Thus in figure 6, as per the attributes available at the most recent

RT, the subject would not be granted to access O2. The Strong Stale-Safe Security Property prohibits access without

refreshing attribute values with the CC. Thus when a request is received, the TRM is required to synchronize attribute

values with the CC before authorization decision is made. Note that it is still possible for attribute values to change right

after synchronization but the property is only intended to minimize the risk.

We can make the TRM satisfy the Weak Stale-Safe Security Property by simply maintaining a refresh time-stamp

indicating the most recent refresh time and ensuring that the Add TS of the requested object is no greater than the refresh

time-stamp. This way we can ensure that the object was authorized at the refresh time. The TRM can be modeled as

a Finite State Machine (FSM) and Stale-Safe Security properties can be verified against the machine using well-known

model checking techniques.

A rigorous formal specification of the g-SIS policy model (using Linear Temporal Logic) and the verification of the

stale-safe security properties against the g-SIS enforcement model using model checking can be found in the appen-

dices.
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Group-Centric
Secure Information Sharing Models

ABSTRACT

In this paper, we develop the foundations for a theory of
Group-Centric Secure Information Sharing (g-SIS), charac-
terize a specific sub-family of models in this arena and iden-
tify several directions in which this theory can be extended.
The traditional approach to information sharing, character-
ized as Dissemination-Centric Sharing in this paper, focuses
on attaching attributes and policies to an object (sometimes
called “sticky policies”) as it is disseminated from producers
to consumers in a system. In contrast, Group-Centric Shar-
ing envisions bringing the subjects and objects together in
a group to facilitate sharing. The metaphor is that of a se-
cure meeting room where participants and information come
together to enable parties to “share” information for some
common purpose.

We propose an abstract set of group operations: Join and
Leave for subjects, Add and Remove for objects. Each of
these operations could be of various flavors characterized in
the paper as Lossy, Lossless, Restorative, Non-Restorative,
Strict and Liberal. For example, in Lossless Join, subjects do
not lose existing authorizations by joining a group. In Lossy
Join, a subject loses some or all of existing authorizations.
We formalize the concept of an Information-Sharing Group
using Linear Temporal Logic (LTL), by specifying three lay-
ers of properties. We begin with a core set of properties
called Level 0 (Simultaneity, Persistence, Liveness, Safety,
etc.) that any g-SIS model must satisfy. Next at Levels
1 and 2 we identify additional properties regarding specific
variations of group operations (Lossy, Lossless, Strict, Lib-
eral, etc.). Finally, we specify the correct authorization be-
havior for a sub-family of g-SIS models using LTL and for-
mally prove using model checking that the models satisfy
the properties.

1. INTRODUCTION
This paper introduces and formalizes the concept of Group-

Centric Secure Information Sharing (g-SIS). The traditional
approach to information sharing, characterized as Dissemina-
tion-Centric Sharing in this paper, focuses on attaching at-
tributes and policies to an object as it is disseminated from
producers to consumers in a system. These policies are
sometimes described as being “sticky”. As an object is dis-
seminated further down a supply chain the policies may get
modified, such modification itself being controlled by exist-
ing policies. This mode of information sharing goes back
to early discussions on originator-control systems [18, 23,
5, 26] in the 1980’s and Digital Rights Management in the
1990’s and 2000’s. XrML [1], ODRL [4] and XACML [2] are
recent examples of policy languages developed for this pur-
pose. Dissemination-Centric Sharing describes in advance
the characteristics or properties of subjects who may access
the object by attaching“sticky policies” to be enforced when
a subject attempts to access the object.

The vision of Group-Centric Sharing differs in that it ad-
vocates bringing the subjects and objects together to facili-
tate sharing. The metaphor is that of a secure meeting room
where participants and information come together to enable

the participants to “share” information for some common
purpose. This common purpose can range from collabora-
tion on a specific goal-oriented task (such as designing a
new product) to participation in a shared activity (such as
a semester long class) to subscription to a magazine (where
the publisher contributes information that the participants
read and possibly respond to content in associated blogs and
forums). Visualize a conversation room where users may
join, leave and re-join but only hear the conversation oc-
curring during their participation period. For instance, in a
Program Committee meeting Alice may be excused from the
room when her paper is being discussed and may re-join the
room after that portion of the discussion has concluded. In
doing so, the conversation that occurred during her absence
is not accessible to her. In another setting, all conversations
are recorded on a whiteboard in the room and as Alice re-
joins she is able to see what happened during her absence.
Such a room may also be appropriate in a different con-
text such as a design group wherein Alice participates as a
consultant on demand. Further, Alice may view all the con-
tents on the whiteboard while participating but may not be
allowed to access the contents after she leaves the room. In
another scenario, when Alice leaves, she may be allowed to
retain access to the discussions in which she participated.

We envision that Dissemination-Centric and Group-Centric
Sharing will co-exist in a mutually supportive manner. For
example, objects could be Added with “sticky” policies in
a Group-Centric model. In this case, the objects may have
controls imposed by both the group-centric model and the
“sticky policies”. Also, the “sticky policies” on the object
could determine whether or not an object can be added to
the group in the first place. It may turn out that at a the-
oretical level whatever Dissemination-Centric can achieve
Group-Centric can also achieve and vice versa. But at a
pragmatic level, we believe these are significantly different
approaches to information sharing.

In this paper we develop the foundations for a theory of
Group-Centric Information Sharing, characterize a specific
sub-family of models in this arena and identify several di-
rections in which this theory can be extended. We pro-
pose an abstract set of group operations: Join and Leave
for subjects, Add and Remove for objects. Subjects may
Join, Leave and re-Join the group. Similarly, objects may
be Added, Removed and re-Added to the group. Further
each of these operations could be of various flavors charac-
terized in the paper as Lossy, Lossless, Restorative, Non-
Restorative, Strict and Liberal. For example, in Lossless
Join, a joining subject never loses access to objects autho-
rized prior to joining the group. Similarly, in Restorative
Join, the joining subject may regain access to objects au-
thorized during past membership period. In general, there
may be any number of such variations beyond those explic-
itly identified in this paper.

Clearly there has to be some control and authorization of
each of these operations. Rules concerning who can Join a
group and who can authorize the Join are critical to secu-
rity of the information sharing achieved via the group, and
likewise for the other operations. Such issues are typically
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addressed as administrative tasks expressed in an adminis-
trative model. We leave the development of such an admin-
istrative model for future work. In this paper we focus solely
on the operational aspects that bear on group membership.
Furthermore, we confine our attention to correct authoriza-
tion behavior with respect to “Read” access. The techniques
can be extended easily to other forms of accesses as needed.

The principal contributions of this paper are as follows.
We formalize the concept of Group-Centric Information Shar-
ing (g-SIS) using Linear Temporal Logic (LTL), by specify-
ing three layers of properties. We identify a core set of prop-
erties at level 0 (Simultaneity, Persistence, Liveness, Safety,
etc.) that should be satisfied by any g-SIS model. Next
at Levels 1 and 2 we specify additional properties regard-
ing specific variations of group operations (Lossy, Lossless,
Strict, Liberal etc.). We formally specify the authorization
policies for a specific sub-family of g-SIS models using LTL.
Finally, we discuss the formal verification of the core proper-
ties against the g-SIS models using the well-known technique
of model checking.

The remainder of this paper is organized as follows. In
section 2, we discuss related work in this area. We specify
core properties (level 0) using LTL in section 3. In section 4,
we specify additional level 1 and level 2 properties based
on specific variations of group operations. In section 5, we
specify the authorization policies for a sub-family of g-SIS
models and prove that they satisfy the core properties. In
section 6, we discuss future work and conclude in section 7.

2. RELATED WORK
Older approaches to Secure Information Sharing (SIS) can

be classified into at least three categories. First is Discre-
tionary Access Control (DAC) [17, 21, 16] which proposes to
enforce controls on sharing information at the discretion of
the “owner” of the object. Although, this is similar in objec-
tive to SIS, DAC fails to solve the problem since it does not
correlate the controls on copies of information with copies
of the original.

The second is Mandatory Access Control (MAC) [8, 15,
16] which allows information to flow in one direction in a lat-
tice of security labels. Copies of information made from one
or more objects inherit the least upper bound of the labels
from the individual objects. Thereby the copies are con-
trolled at least as strictly as the original. Historically, one
directional information flow has not been the most common
requirement of SIS. In particular, MAC does not allow the
owner of the object to share information but also to pro-
tect it from other users in the same or higher security levels.
MAC also suffers from covert channel issues whereby infor-
mation flow contrary to the labels can occur via malware.

The third is Originator Control or ORCON [18, 23, 5,
26] in which the owner of the object decides which user(s)
may have access to it. The owner is the principal source of
the policy to be enforced. As information flows from one
container to another, the policy is also propagated. In other
words, it is a “sticky policy”.

Recently, information sharing challenges have been con-
sidered in the context of Dynamic Coalition Problem or
DCP (see [27, 9, 19, 20, 7, 32] for example). The DCP
is concerned with the challenges involved when a coalition is
dynamically formed, for example, in response to a crisis.
Government, civilian and other commercial organizations
may need to form a coalition (who may otherwise distrust

each other) and share information quickly to solve the prob-
lem at hand. In [6], the authors use a role-based delegation
framework for specifying policies for resource and informa-
tion sharing within and across organizations. Finally, the
Secure Information Sharing Architecture or SISA [3] is an al-
liance formed by major technology corporations that provide
Commercial Off-The Shelf (COTS) architectural solutions to
share information between various organizations. Our work
largely differs from all these approaches in that we solely
focus on the policy models for a group-centric SIS problem
thereby separating enforcement and implementation issues
from policy [31]. Further, formal specification of g-SIS prop-
erties using LTL enables us to rapidly automate verification
against the models using well-known model checking tech-
niques.

To the best of our knowledge, this is the first effort to-
wards developing a formal model for group-centric SIS. At
a policy level, the closest work to group-centric sharing that
can be found in the literature is in the area of Secure Mul-
ticast [28]. It will be evident later that the g-SIS models
subsume policies considered by Secure Multicast.

3. CORE G-SIS PROPERTIES (LEVEL 0)
In this section, we specify a core set of properties that

should be satisfied by any g-SIS policy model. We formally
specify the properties using Linear Temporal Logic [22].

3.1 Overview
A g-SIS policy model is a Finite State Machine (FSM)

that responds to sequences of group events (Join, Leave,
Add and Remove) and determines at each state what read
requests would be authorized should they occur. As will be
discussed in detail later, each group operation (Join, Leave,
Add and Remove) could be of various types. For example, a
Join operation could be Lossless or Lossy. In Lossless Join,
the joining subject never loses access to objects authorized
prior to Join time. In Lossy Join, the joining subject may
lose access to some or all of the objects authorized prior to
Join time. A Lossless Join is the most common SIS scenario.
Revisiting our earlier secure meeting room scenario, when
Alice momentarily steps out, suppose that she is allowed to
retain access to all the conversations that happened in the
room during her presence. When she re-joins the room, it
is natural that she does not lose access to those past con-
versations. However, if Alice joins in a Lossy manner, she
may be forced to relinquish access to past conversations at
re-join time.

Similarly, a Join operation could be Restorative or Non-
Restorative. A Restorative Join explicitly restores accesses
authorized during past membership period while a Non-
Restorative Join does not. Suppose Alice steps out and she
is not allowed to access any conversation when she leaves the
room. When Alice re-joins the conversations in the room,
a Restorative Join explicitly restores her past accesses (ir-
respective of what exactly the current Join enables). But
in a Non-Restorative Join, the Join operation does not ex-
plicitly restore her past access. If the nature of her current
Join allows her to access past conversations, she may access
them—not otherwise. Finally, the group operations could
be Strict or Liberal. A Strict operation is more restrictive
in terms of access relative to its Liberal counter part. For
example, suppose Bob joins the room for the first time. A
Strict Join would allow Bob to access only new conversa-
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Figure 1: Layered g-SIS Properties.

tions. On the contrary, a Liberal Join, in addition, would
allow Bob to access older conversations in the room that
happened before he joined. In general, there may be any
number of such variations of group operations.

Figure 1 shows a layered set of properties. At the cen-
ter is the Core or Level 0 properties that must be satis-
fied by any g-SIS model. Next, we have Level 1 properties
that must be satisfied (in addition to the core properties)
by models that support specific variations of group oper-
ations (Lossy/Lossless, Gainless/Gainful, Restorative/Non-
Restorative, etc.). Finally, we have Level 2 properties that
are based on next level of variations of group operations
(Strict/Liberal). In general, indefinite levels of such proper-
ties are possible (illustrated in the figure as a dotted circle)
but we anticipate two or three levels would suffice in prac-
tice.

The properties we discuss in this section are Core or Level
0 properties that any g-SIS model should satisfy regardless
of the additional properties that it may support at Levels 1
or 2. A model is admitted as g-SIS only if it satisfies all of
the core properties. On the contrary, a g-SIS model need not
satisfy every Level 1 or 2 property. These properties allow
various flavors of g-SIS models since they are based on spe-
cific variations of group operations. At level 1, we propose
that such variations be fixed for all subjects in a given g-SIS
model. That is, a g-SIS model should pick a specific subset
of Level 1 properties that it wants to support depending on
the requirements posed by the application. However, this
subset may vary from one model to another. For example,
in a given g-SIS model, we pick Lossy or Lossless Join for
all subjects. Level 2 properties are based on specific varia-
tions of Level 1 group operations. Unlike Level 1 properties,
a g-SIS model is allowed to dynamically choose any varia-
tion of Level 2 group operartions. For example, subject s1
may be given Strict Join while s2 may be given Liberal Join.
However Level 1 operation type is fixed for both s1 and s2.

3.2 Formal Specification of Core Properties
We now formally specify the core g-SIS properties. We

use Linear Temporal Logic [22] to specify group properties
that the g-SIS models should satisfy. Temporal logic is a
specification language for expressing properties related to a
sequence of states in terms of temporal logic operators and
logic connectives (e.g., ∧ and ∨). Temporal logic operators
are of two types: Past and Future. A brief overview of tem-
poral operators used in this paper is given in table 1 which
can be used as a reference to interpret the upcoming formu-

las. A model will be admitted as g-SIS only if it satisfies all
of the core properties. Thus, these properties should be sat-
isfied by models that support any type of group operation.

Notations and Conventions.
We now discuss a few notations and conventions that will

be used in specifying the formulas in this paper. We men-
tioned earlier that the group operations could be of many
different types. For example, joini, leavej, addk and removeℓ

are a specific type of Join, Leave, Add and Remove respec-
tively. In all of our formulas, Join, Leave, Add and Remove
are meta-variables that denote a disjunction of those types
as indicated below. We assume that any reference to Join,
Leave, Add and Remove operations are interpreted with the
following semantics:

Join(s) ≡ (join1(s) ∨ join2(s) ∨ ... ∨ joinm(s))

Leave(s) ≡ (leave1(s) ∨ leave2(s) ∨ ... ∨ leaven(s))

Add(o) ≡ (add1(o) ∨ add2(o) ∨ ... ∨ addp(o))

Remove(o) ≡ (remove1(o) ∨ remove2(o) ∨ ... ∨ removeq(o))

We characterize the group operations as events in the LTL
formulas. That is, Join is “True” only if any of the joini

events (for 1 ≤ i ≤ m) occur in a temporal state. Simi-
larly, Leave, Add and Remove are “True” only if any of the
respective events occur.

Authz(s,o,r) is a predicate on states that when “True”,
indicates that the r operation is authorized in that state.
That is, the “True” or “False” value of Authz depends on the
previous trace of events. We concern our attention to autho-
rizations involving read access and the properties we specify
can be extended, if need be, to other types of accesses. Note
that objects can be added to the group but Authz is only
concerned about read access to those objects. In summary,
we have the following:

Join (s) Subject s joins the group. Represents
occurrence of one of joini events.

Leave (s) s leaves the group. Represents
occurrence of one of leavej events.

Add (o) Object o is added to group. Represents
occurrence of one of addk events.

Remove (o) o is removed. Represents
occurrence of one of removel events.

Authz (s,o,r) s is authorized to exercise a right r on o.

We drop the parameters in all of the predicates above for
convenience and clarity. Thus a formula Authz → (Join ∧
(¬(Leave∨Remove) S Add)) actually means Authz(s, o, r) →
(Join(s)∧ (¬(Leave(s)∨Remove(o)) S Add(o))). Note that
Join and Leave refer to the same subject and Add and
Remove refer to the same object. Further, Authz refers to
the same specific pair of s and o.

A g-SIS policy model is an FSM as described below:

M = 〈E, Authz, σ0, Σ, ∆〉

E = {Join ∪ Leave ∪ Add ∪ Remove}

Authz : Σ → {True, False}

∆ : Σ × 2E → Σ

A g-SIS model, M, is a 4-tuple: E is a union non-empty
sets of group events (i.e., each set of Join, Leave, Add and
Remove is non-empty), Authz is the authorization predicate
that is either True or False in each state, σ0 is the initial

3



Table 1: Temporal Operators
Future/Past Operator Read as Explanation

© Next (© p) means that the formula p holds in the next state.
2 Henceforth (2 p) means that the formula p will continuously hold in all future

states starting from the current state.
Future U Until (p U q) means that q will occur sometime in the future and p will

hold at least until the first occurrence of q.
W Unless (p W q) is a weaker form of (p U q). It says that p holds either until

the next occurrence of q or if q never occurs, it holds throughout the
sequence.

-© Previous ( -© p) means that formula p held in the previous state.
Past ¨ Once (¨ p) means that formula p held at least once in the past.

S Since (p S q) means that q happened in the past and p held continuously
from the position following the last occurrence of q to the present.

state, Σ is the set of all states and ∆ is the transition rela-
tion which specifies the transition that the FSM should take
when an event occurs.

Well-Formed Traces.
The following g-SIS assumptions separate well-formed traces

of group events from all possible traces. A g-SIS model, M,
ignores any trace of group events that does not satisfy the
following formulas. Thus our properties apply only to well-
formed traces.
A. Two events for the same subject cannot occur at the same
time. Similarly, two events for the same object cannot occur
at the same time. There are two cases:

A.1 An object cannot be Added and Removed and a sub-
ject cannot Join and Leave at the same time.

2(¬(Add ∧ Remove) ∧ ¬(Join ∧ Leave))

A.2 For any given subject or object, two types of operation
cannot occur at the same time 1.

∀i, j 2((i 6= j) →¬(joini ∧ joinj))

∀k, ℓ 2((k 6= ℓ) →¬(leavek ∧ leaveℓ))

∀s, t 2((s 6= t) →¬(adds ∧ addt))

∀x, y 2((x 6= y) →¬(removes ∧ removey))

B. If a subject s joins a group, s cannot join again unless
s first leaves the group. That is, any two Join’s should be
separated by a Leave. A similar rule applies for other oper-
ations.

2(Join →© (¬Join W Leave))

2(Leave →© (¬Leave W Join))

2(Add →© (¬Add W Remove))

2(Remove →© (¬Remove W Add))

A g-SIS policy model should satisfy all of the following core
properties.

1. Overlapping Membership (Simultaneity) Property:
We begin with the simplest and most fundamental
property. Clearly, a group subject can access a group
object only if they were both members of the group

1Note that LTL does not allow an event to occur more than
once in the same state. For example, join1 remains True if
it occurs once or twice in the same state.

at least once: 2(Authz → (¨Add ∧ ¨Join)). This is
too weak to be a core property since the subject and
object could have been members at different time pe-
riods. We first strengthen this property by requiring
that the subject and object were simultaneously mem-
bers of the group at some point in the past. That is,
the subject and object had an overlapping membership
period as specified below:

2(Authz →¨(Add ∧ (¬Leave S Join)) ∨

¨(Join ∧ (¬Remove S Add)))

This formula can be interpreted as follows. In a g-SIS
model if a subject is able to access an object then there
exists a point in the past (indicated by the ¨ opera-
tor) where (a) the object was added and the subject
was part of the group at that point in time (¬ Leave
Since Join) or (b) the subject joined the group and
the object was part of the group at that point in time
(¬ Remove Since Add).

Next, we further strengthen this property by requiring
that only membership can enable authorizations. That
is, a subject is able to access an object only by joining
the group. A Join operation can enable new access
while a Leave may at most maintain the authorizations
enabled by Join or disable some or all authorizations.
We now state the Overlapping Membership Property
as below:

2(Authz →¨(Join ∧ ((¬Leave ∧ ¬Remove) U Authz)∧

(¬Remove S Add))∨

¨(Add ∧ ((¬Leave ∧ ¬Remove) U Authz)∧

(¬Leave S Join)))

This property strengthens the earlier formula by re-
quiring that Authz holds in a state only if it held at
least once during an overlapping membership period 2.

2. Persistence Properties: These properties state that
authorization value (True, False) can change only when
a group event (for the subject and object in question)

2Thus if a subject is able to access an object during non-
membership period then the access should have been au-
thorized during a membership period in the past. This can
be stated as: 2((Leave ∧ (¬Join U Authz)) → ¨(Join ∧
(¬Leave U Authz))).
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occurs.
Authorization Persistence: When a subject s is au-
thorized to access an object o, it remains so at least
until a group event involving s or o occurs 3.

2(Authz → (Authz W (Join ∨ Leave∨

Add ∨ Remove)))

Revocation Persistence: When a subject s is not
authorized to access an object o, it remains so at least
until a group event involving s or o occurs.

2(¬Authz → (¬Authz W (Join ∨ Leave∨

Add ∨ Remove)))

3. Liveness Property: When a subject joins a group any
object that is added to the group after Join time must
be authorized unless the subject or object exits the
group. This is a Liveness Property because it specifies
the conditions under which authorization must suc-
ceed.

α1 ≡ (Add → (Authz W (Remove ∨ Leave)))

α ≡ 2(Join → (α1 W Leave))

Formula α above characterizes this property. It states
that if a Join occurs then the implication α1 should
hold continuously unless a Leave occurs. Formula α1

says that if an Add occurs, Authz should hold contin-
uously unless a Remove or a Leave occurs. Effectively,
α states that if a subject joins the group and subse-
quently an object is added (while the subject is still a
member), the subject will be authorized to access the
object unless and until the subject or the object exits
the group.
Note that this property also implies when an object is
added to the group, any subject who joined the group
prior to object Add time can access the object unless
the subject or object exits the group. Thus the above
property can be equivalently stated as follows:

2((Add ∧ (¬Leave S Join)) →

(Authz W (Leave ∨ Remove)))

4. Safety Properties: These safety properties specify the
conditions under which a subject cannot access an ob-
ject. They specify conditions in which authorization
must be denied.
Subject Safety: After a subject leaves a group, if
an object is added for the first time, the past subject

3Note that a subject may Join a group, Leave subsequently
and retain access to some objects. It is possible that this
subject may lose access to these objects by Joining the group
again. We call this a Lossy Join where joining a group may
actually require a subject to relinquish all prior access. In
general, there are many flavors of group operations that will
be discussed in detail in the following sections. This is the
reason we include enabling operations such as Join and Add
in the W (unless) predicate in the above formula.

cannot access the object 4.

2((Leave ∧ (¬¨Add)) →((¬Authz W Join)∧

(¬Authz W Add)))

Object Safety: A removed object cannot be accessed
by subjects joining the group for the very first time 4.

2((Remove ∧ (¬¨Join)) →((¬Authz W Join)∧

(¬Authz W Add)))

Bounded Subject Authorization: The set of all
objects that a subject can access during non-membership
period is bounded at Leave time. This set cannot grow
until the subject rejoins the group.

2((Leave ∧ ¬Authz) → (¬Authz W Join))

Bounded Object Authorization: This is a dual of
the earlier property. The set of all subjects who can
access a removed object is bounded at Remove time.
This set cannot grow until the object is re-added to
the group.

2((Remove ∧ ¬Authz) → (¬Authz W Add))

4. G-SIS PROPERTIES (LEVELS 1 AND 2)
In this section, we specify additional properties based on

the various flavors that a g-SIS model may support. We
first specify the Level 1 properties which are concerned with
the first level of variations—Lossy, Lossless, Restorative and
Non-Restorative. Next, we specify Level 2 properties that
are next level of variations: Strict and Liberal.

We first specify additional terminology that will be used
in the rest of this paper. Figure 2 shows a sample trace of
events on a timeline. Starting from left, subject s1 joins and
leaves the group and re-joins again in the future. During
this period, objects are added and removed from the group.
Relative to s1’s most recent join, we refer to objects o2 and
o3 as existing group objects. Objects o4 and o5 are referred
to as new objects (relative to s1) to be added in the future.
Similarly, in Figure 3, when o2 is added, s1 is referred to as
existing group subject relative to o2. s1 and s3 are referred
to as new group subjects (relative to o2) who join the group
after o2 is added.

Further, a subject is called a current subject if he/she
joined the group sometime in the past and has not left the
group since then. A subject is called past subject if he/she
joined the group sometime in the past, subsequently left the
group and has not re-joined since then. The terms current
object and past object have similar semantics.

4.1 Level 1 Properties

4.1.1 Lossless Vs Lossy Join

The Join operation could be either Lossless or Lossy. In
Lossless Join, the joining subject does not lose access to ob-
jects that were authorized prior to Join time. For example,
in figure 2, suppose that when s1 leaves the group he/she
is allowed to retain access to objects o1 and o2. From the
Overlapping Membership Core property, o3 is not accessible

4This property is entailed by the Overlapping Membership
Property as demonstrated in appendix A. Nevertheless, we
believe it is an important observation for safety and hence
explicitly recognize it here as a core property.
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Figure 2: Subject Operations Illustration.

Figure 3: Object Operations Illustration.

since it is added after s1 leaves the group. When s1 rejoins
the group, Lossless Join does not revoke access to o1 and o2.
On the contrary, a Lossy Join can revoke access to some or
all of the objects authorized prior to Join time. Following
our example, when s1 rejoins the group, a Lossy Join revokes
access to objects o1 and/or o2 that s1 had access prior to
Join time. Note that when a subject joins a group for the
first time, Lossy and Lossless Join operations behave exactly
the same way. They differ only when subjects re-join.

A Lossy Join may sound counter-intuitive at first thought
but there are real-world scenarios where such a behavior
is desirable. Revisiting our meeting room scenario, during
Alice’s presence in the room she is allowed to take personal
notes of the discussions and keep it when she leaves the
room. But when re-joins the room at a later period, she
may not be allowed to bring her personal notes. This is
applicable in many scenarios such as students taking exams.
Students take notes and can access course materials when
they register for the course. Once the course is finished,
they retain access to course materials to prepare for the
exam. But when they take the exam (re-enter the room),
they may not be allowed to access course materials.

4.1.2 Gainless Vs Gainful Leave

Similar to Join, the Leave operation could either be Gain-
less or Gainful. In Gainless Leave, a subject does not gain
additional access to group objects by leaving a group. This
means that if a subject is able to access an object after
leaving the group, the access should have been authorized
during the most recent membership period. On the con-
trary, in Gainful Leave, the subject may gain new access by
leaving the group. For example, a subject may gain access
to objects that were authorized during some prior member-
ship and not necessarily the most recent membership. Such
a behavior is desirable in situations where an incentive is
provided to leave a group—commonplace in voluntary re-
tirement or severance packages.

4.1.3 Non-Restorative Vs Restorative Join

The Join operation could further be Restorative or Non-
Restorative of past accesses. When a subject joins a group,
a Restorative Join restores access to objects that were au-
thorized during his/her most recent membership period. On
the other hand, a Non-Restorative Join does not restore past
access when a subject rejoins the group.

Consider s1’s most recent membership period in figure 2.
During membership period, s1 is able to access o2. Suppose
when s1 leaves the group, o2 cannot be accessed. When
s1 rejoins, a Restorative Join will restore access to o2. A
Non-restorative Join does not explicitly restore access to o2.
However, s1 may be able to access o2 for other reasons. For
example, suppose that the rejoin operation allows access to
all existing objects, s1 may access o2 and o3 (be it Restora-
tive or Non-restorative Join). However, if the rejoin oper-
ation allows s1 to access only new objects, a Restorative
Join will allow s1 to access o2 whereas a Non-Restorative
Join will not. A Restorative Join is desirable where a join-
ing subject is given an incentive to re-join a group. This
is typical in subscription models—when a customer renews
membership, he/she may access all the earlier magazines
that were authorized during past subscription in addition to
new accesses granted by current subscription.

4.1.4 Non-Restorative Vs Restorative Leave

The Leave operation could also be Restorative or Non-
Restorative of access authorized before current membership.
Consider the most recent membership period in figure 2.
Suppose that when s1 leaves the group he/she is allowed to
retain access to o2. Further suppose that when s1 rejoins,
access to o2 is lost (for e.g., due to a Lossy Join). During
membership period, s1 is able to access o4 and o5. Now
when s1 leaves the group, a Restorative Leave allows s1 to
regain access to o2. Non-restorative Leave does not restore
access to o2.

4.1.5 Formal Specification

Lossless Join Property: In a g-SIS model with Lossless
Join, if a subject had access to an object before join
time, the subject can continue to access the same after
join time.

2((Join ∧ ¬Remove ∧ -© Authz) → Authz)

This formula states that if a subject joins a group and
is authorized to access a group object in the previous
state (just prior to Join), the subject can continue to
access the object even after Join. Note that as per the
Authorization Persistence Property, Authz will con-
tinue to hold as long a subject or an object event does
not occur.

Lossy Join Property: A g-SIS model with Lossy
Join does not satisfy the Lossless Join property. In
other words, there exists at least one well-formed trace
of subject and object events for which Authz does not
satisfy the above property.

Gainless Leave Property: In Gainless Leave, on leaving
a group, the subject cannot gain new access.

2((Leave ∧ (¬Join U Authz)) → -© ((¬Authz ∧ ¬Join)

S (Authz ∧ (¬Join S Join))))

This formula says that if the subject is authorized to
access an object during non-membership period then
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it should have been authorized during the most recent
membership period.

Gainful Leave Property: In a g-SIS model with
Gainful Leave, there exists at least one well-formed
trace of subject and object events for Authz does not
satisfy the Gainful Leave property.

Non-Restorative Join Property: In Restorative Join, a
joining subject gets access to objects authorized during
past membership period irrespective of the type of the
current Join operation. In Non-Restorative Join, past
authorizations are not necessarily restored by current
Join operation. The joining subject is able to access
objects from past membership period only if allowed by
the current Join operation and not otherwise. Thus if
the joining subject is able to access objects that is not
enabled by the current Join, then he/she should have
had access to the same object just prior to joining the
group.

Formalizing this property is complicated because we
want our characterization to be independent of the ex-
act semantics of the Join operation in question. In-
tuitively, we want to require that the Non-restorative
Join does not add any authorizations that it would
not have added if the subject had a different history.
However LTL does not enable one to compare different
traces. The solution we take is to consider two different
subjects within a single trace. Because the two sub-
jects can have different histories with the same trace,
this strategy enables us to formalize the property in
LTL as follows:

ρ1 ≡ joini(s1) ∧ joini(s2)

ρ2 ≡ (Authz(s1, o, r) ∧ ¬Authz(s2, o, r)) →

-© (Authz(s1, o, r) ∧ ¬Authz(s2, o, r))

ρ ≡ ∀i2(ρ1 ∧ ρ2)

In formula ρ1, subjects s1 and s2 both join the group
at the same time by means of the same type of Join
(specifically joini, where 1 ≤ i ≤ m). ρ2 says that if s1
is authorized to access an object in the current state
and s2 is not, this should also be the case in the previ-
ous state (and vice-versa). The Non-Restorative Join
property is characterized by formula ρ. It states that
if two subjects Join the group at the same time with
the same type of Join, then any difference in access
at Join time is the result of some operation prior to
the current Join operation. Let us use formula ρ2 to
understand the intuition. Because both s1 and s2 Join
at the same time with same type, any access that is
necessarily enabled by this Join for s1, would also be
enabled for s2. Any additional access that s1 may have
that s2 does not have could arise only because s1 had
access to that object before joining the group. This
captures the fact that access is not restored from past
but is a consequence of the type of Leave operation
applied to the subject when he/she left the group in
the past.
Restorative Join Property: In Restorative Join,
there exists at least one well-formed trace that does not
satisfy the Non-Restorative Join property. If a subject
joins a group using Restorative Join, some or all of the
accesses to objects authorized during past membership

period may be restored (unless it has been removed).
Note that this is in addition to the authorizations that
Join enables. The following formula characterizes a
type of Restorative Join where all past authorizations
are restored.

2(Join ∧ ((¬Leave ∧ ¬Remove) S

(Leave ∧ -© Authz)) → Authz)

The above formula can be interpreted as follows. Con-
sider the state at which a subject joins a group. Trace
back to the point where the subject last left the group
in the past. If the subject was authorized to access an
object just prior to that point of Leave (a point that
lies within the past membership period), then the sub-
ject is authorized to access that object at the point at
which he/she joins if the object has not been removed
from the group.

Non-Restorative Leave Property: In Non-Restorative
Leave, past authorizations prior to current member-
ship period is not explicitly restored when leaving a
group. Thus if a subject is able to access an object
after leaving a group, then it should have been autho-
rized during the membership period.

2(Leave ∧ Authz → -© Authz)

Restorative Leave Property: In Restorative Leave,
there exists at least one well-formed trace that does not
satisfy the Non-Restorative Leave Property. The fol-
lowing formula characterizes a specific type of Restora-
tive Leave Property where access to all objects autho-
rized prior to Join is restored.

2((Leave ∧ ¬Remove ∧ -© ((¬Leave ∧ ¬Remove) S

(Join ∧ -© Authz))) → Authz)

The above formula is similar to Restorative Join except
that we now trace back to the most recent Join from
the point of Leave and if the subject was authorized
prior to Join, the subject is also authorized at the time
of Leave, provided the object has not been removed.

4.2 Level 2 Properties (Strict Vs Liberal)
We now discuss the next level of g-SIS properties (Level

2) based on additional variations of group operations. These
operations apply to variations (Lossy, Lossless, Restorative,
Non-Restorative) identified in Level 1. Each group opera-
tion can further be Strict or Liberal based on the nature of
access that it allows. Thus we have Strict and Liberal ver-
sions of Join, Leave, Add and Remove denoted SJ, SL, SA
and SR and LJ, LL, LA and LR respectively. In general, a
Strict operation is more restrictive of access than its Liberal
counterpart.

A g-SIS model allows four group operations: (Join, Leave,
Add, Remove). If the type of operations are fixed for all
subjects and objects (i.e. a specific type of operation is ap-
plied for all group subjects and objects), there are 16 possi-
ble models ranging from the most restrictive model allowing
only Strict operations: (SJ, SL, SA, SR) to the most permis-
sive model allowing only Liberal operations: (LJ, LL, LA,
LR). This is illustrated in figure 4. Parts (a) through (d)
show that the Strict operation is more restrictive than the
Liberal operation. Parts (e) and (f) show the subject and
object model that is obtained by the cartesian product of
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subject and object operations respectively. Finally, a lattice
of 16 g-SIS models can be obtained by a cartesian product of
subject and object models (parts (e) and (f)). An authoriza-
tion policy exists for each of these 16 models that specify the
conditions under which a subject may access an object. On
the other hand, a highly flexible g-SIS model could simply
allow different types of operations on a case by case basis.
For example, SJ for s1, LJ when s1 re-joins, LJ for s2, LL
for s1, SL for s2, SJ when s2 re-joins, etc. (similarly for
objects). In this case, we have one all encompassing autho-
rization policy that specifies the conditions under which a
subject may access an object.

4.2.1 Subject Operations

We discuss the notion of Strict and Liberal for subject
operations below.

Strict Join (SJ): In Strict Join, a joining subject can only
access new group objects as they are added. Suppose
that in figure 2 the second Join (s1) is an SJ. Then s1
can access o4 and o5 and cannot access o3. Note that
access to o2 will depend on the type of the previous
Leave and current Join (Lossy or Lossless).

Liberal Join (LJ): In Liberal Join, a joining subject can
access both existing and new group objects. In fig-
ure 2, if the Join was an LJ instead of SJ, s1 can also
access o2 and o3 in addition to o4 and o5.

Strict Leave (SL): In Strict Leave, a leaving subject loses
access to all group objects. In figure 2, on SL, s1 loses
access to all group objects authorized during member-
ship period. Note that this is a specific type of Lossy
Leave where all access is lost by leaving a group.

Liberal Leave (LL): In Liberal Leave, a leaving subject
can retain access to all objects authorized during his/her
recent membership period. Suppose that in figure 2
the Leave is an LL. In this case, s1 retains access to
o2. Note that, after Leave, o3 cannot be accessed by
s1. This is a Lossless Leave.

4.2.2 Object Operations

We discuss the notion of Strict and Liberal for object op-
erations below.

Strict Add (SA): In Strict Add, the added object can be
accessed only by existing group subjects. If Add (o2)
in figure 3 is an SA, only s1 can access the object. Sub-
jects s2 and s3 joining later cannot access this object.

Liberal Add (LA): In Liberal Add, the added object can
be accessed by both existing and new group subjects.
Thus if Add (o2) is an LA in figure 3, existing subject
s1 and new subjects s2 and s3 may access o2.

Strict Remove (SR): In Strict Remove, the removed ob-
ject cannot be accessed by any group subject. In fig-
ure 3, if Remove (o1) is an SR, every group subject
(including s1) loses access to o1.

Liberal Remove (LR): In Liberal Remove, subjects who
had access to the object at remove time can retain
access. However, other subjects will not be able to
access the removed object unless the object is added

Figure 4: A family of g-SIS models: The carte-
sian product of Subject and Object Model results in
a lattice of 16 g-SIS models with fixed operation types
(products are ordered pointwise).

again in the future. In figure 3, if Remove (o1) is an
LR, s1 can continue to access o1. However s2 and s3
will not have access to o1.

4.3 Discussion
Let us now discuss how these operations enable informa-

tion sharing. We make a few simplifying assumptions to
illustrate the mechanics. Consider a g-SIS model with the
operation types: (LJ, SL, SA/LA, SR) where all operations
are fixed except object Add. Objects can be added to the
group by type SA or LA. Let us consider the simplest case
of information sharing where a group consists of at most
two members at any time but may have any number of ob-
jects. The group is mission oriented, so many users may
join and leave the group in order to contribute and receive
information over time.

Suppose Alice and Bob join the group at the same time.
They can share information by adding objects to the group.
If Bob wants to ensure that any information he shares with
Alice is not accessible to future subjects who may join the
group, he can add objects with SA. SA’ed objects are only
accessible to existing members at add time. This allows cur-
rent members of the group to share information privately.
On the other hand, to the mission’s end, information can be
made available to future subjects by LA’ing objects to the
group. Suppose Alice leaves the group and Cathy replaces
her by LJ to the group. Cathy cannot access SA’ed infor-
mation shared between Alice and Bob before her join time.
In other words, Cathy can access existing LA’ed group ob-
jects that were added before her join time and newly added
objects.

Further, suppose Alice re-joins the group by LJ, replacing
Bob. Alice can access LA’ed objects shared between Bob
and Cathy. Note that Alice cannot access SA’ed objects
that Bob added to the group during her past membership
along with Bob. This scenario is illustrative of the need for
Restorative Join. If Alice is LJ’ed in a Restorative manner
to the group, she can regain access to SA’ed objects during
her past membership period.
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Figure 5: Fixed Operations, Most Restrictive
Model: (SJ, SL, SA, SR).

In all these steps, a leaving subject (SL’ed) loses access
to all group objects. Similarly, a removed object (SR’ed)
cannot be accessed by any past or current group subject. If
the mission requires access to objects after leaving a group,
one needs a model with LL.

5. FORMAL SPECIFICATION OF G-SIS
In this section, we formally specify the authorization poli-

cies for g-SIS models using LTL. One can clearly appreci-
ate a multitude of variations of group operations leading to
a large number of g-SIS models. In this paper, we spec-
ify authorization policies for a sub-family of models involv-
ing the following operation types: Lossless Non-Restorative
Join and both Lossy and Lossless Non-Restorative Leave.
Other g-SIS models can be easily developed by extending
this sub-family. To this end, we will later show how an
authorization policy specified under these constraints can
be extended to accommodate Restorative Join operations.
From here on, whenever we use the term Join, we mean
Lossless and Non-Restorative Join (unless specifically qual-
ified otherwise). Similarly, the term Leave henceforth refers
to Non-Restorative Leave. Note that Leave could be either
Lossy or Lossless.

Thus, in the following, Strict Join (SJ) and Liberal Join
(LJ) actually refer to Lossless, Non-Restorative SJ and LJ
respectively. Similarly, Strict Leave (SL) and Liberal Leave
(LL) refer to Non-Restorative SL and LL respectively. Fur-
ther, SL and LL characterizes Lossy and Lossless Leave re-
spectively.

We first consider the models where the operations are
fixed for all subjects and objects. As shown in figure 4,
there are 16 such models. Due to space constraints, we dis-
cuss only two fixed models in this paper—a model that is
most restrictive and another that is most permissive in terms
of access granted. Note that if the restrictive model permits
a subject to access an object, the permissive model should
also grant access to the same object.

Next, we consider a highly flexible g-SIS model where any
type of operation is permitted and the type of operation
could differ from subject to subject (or from object to ob-
ject). For example, SJ for s1, LJ for s2, etc. Effectively,
the authorization policy for this model with mixed opera-
tions should subsume all the 16 models with fixed opera-
tions. While this may sound very complex, it will be shown
that by systematic analysis, it is possible to write a succinct
yet expressive formula that can cover all the cases. We will
also illustrate how the two models with fixed operations that
we discuss conform precisely to this more general model.

5.1 Models with Fixed Operations
We now specify the authorization policies for the most

restrictive and most permissive of the 16 g-SIS models with
fixed operations type. The remaining 14 models are more

Figure 6: Fixed Operations, Most Permissive
Model: (LJ, LL, LA, LR).

restrictive than this permissive model and more permissive
than this restrictive model.

5.1.1 Most Restrictive Model (SJ, SL, SA, SR)

Recall that on SJ, a subject can only access new objects.
On SL, the subject loses access to all group objects. Sim-
ilarly, on SA, only existing group subjects can access the
added objects. An SR’ed object cannot be accessed by any
subject.

Definition 5.1 (Most Restrictive Model). A g-SIS
model is called the Most Restrictive if it satisfies the follow-
ing LTL formula:

2(Authz ↔ (¬SR ∧ ¬SL) S (SA ∧ (¬SL S SJ)))

The above formula is illustrated in figure 5. The formula
says that a subject is authorized to access an object if and
only if the subject and object are still part of the group since
it was added. Also, at the time the object was added, the
subject was a current member of the group. Because of SJ
and SL, we only need to consider the case where an object
is added after the subject joins the group. Subjects are not
authorized to access objects added prior to their join time.

5.1.2 Most Permissive Model (LJ, LL, LA, LR)

In this model, an LJ’ed subject can access both existing
and new objects. On LL, the subject can continue to access
objects that were authorized during the membership period.
An LA’ed object can be accessed by both existing and new
subjects. Subjects who were authorized to access an object
at the time it is LR’ed can continue to access the object.

Definition 5.2 (Most Permissive Model). A g-SIS
model is called the Most Permissive Model if it satisfies the
following LTL formula:

2(Authz ↔ ¨(LA ∧ (¬LL S LJ)) ∨ ¨(LJ ∧ (¬LR S LA)))

Since this model permits LJ, there are two scenarios (fig-
ure 6): one where the subject joins prior to the time at
which the object in question is added (case (a)) and the
other where the subject joins after the object in question is
added (case (b)). The first disjunct in the above formula
covers the former case and the second disjunct covers the
latter case. Note that the ¨ operator in each case says that
the respective traces could occur any time in the past. Natu-
rally, the Most Permissive model is exactly the same as the
Overlapping Membership Property with an if and only if
condition. Effectively, if a subject and an object were mem-
bers at the same time at any time in the past, this model
permits the subject to access the object and the access will
never be revoked.

5.2 Models with Mixed Operations
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Figure 7: Mixed Operations - Formula ϕ1.

Figure 8: Cases when Add occurs prior to Join.

We now discuss the specification of authorization policy
for a g-SIS model that allows any type of group operation 5.
The formulas that we discussed for models with fixed opera-
tion types give us some insight on handling mixed operation
models. At a high-level there are two cases to consider when
a subject requests access to an object: (a) the subject Join
event occurred prior to object Add event and (b) the object
add event occurred prior to subject Join event. Intuitively,
an authorization policy that correctly addresses these two
cases would be complete. We now separately consider these
two cases.

ϕ1 ≡((¬SL ∧ ¬SR) S ((SA ∨ LA) ∧ ((¬LL ∧ ¬SL)

S (SJ ∨ LJ))))

Formula ϕ1 addresses the scenario where the object is
added after the subject joined the group (figure 7). Since
Join occurred prior to Add, it does not matter whether the
object in question was LA’ed or SA’ed to the group and
whether the subject in question SJ’ed or LJ’ed the group.
The subject can access the object in both cases as per our
Liveness Properties. Formula ϕ1 says that the subject has
not been SL’ed and the object has not been SR’ed since it
was added. Further, when the Add occurred the subject had
not left (SL’ed or LL’ed) since Join (SJ or LJ).

In figure 7, an SL or SR since object add time denies access
to the requested object. However, it is alright for an LL or
LR to occur during that period. Recall that an LR allows
subjects who were authorized prior to the remove time to
retain access and LL allows a leaving subject to retain access
to objects authorized during membership period. Similarly,
if the subject was not a current member when the object
was added (i.e., joined and left the group before the object
was added), access cannot be granted as per Overlapping
Membership property. Note that in figure 7 it is possible
the subject may Join and Leave before the Add occurs and
rejoin after the Add. But this scenario where a Join occurs
after Add is addressed by formula ϕ2.

An Add occurring prior to Join is a more interesting sce-

5We later show how this formula can be extended to accom-
modate models that allow Restorative Joins. It is possible to
extend this core formula to accommodate models that allow
other operations (Lossy Join, Restorative Leave, etc.).

Figure 9: Mixed Operations - Formula ϕ2.

nario. As shown in figure 8, there are four possible cases.
Let us first consider cases (a) and (b) where the object is
SA’ed to the group. Recall that an SA’ed object can be ac-
cessed only by existing subjects (that is, the subjects who
joined the group prior to object Add). Clearly, irrespective
of the type of Join, the subject is not authorized to access
the objects that were SA’ed prior to the subject Join time.
Thus Authz fails in cases (a) and (b).

Consider cases (c) and (b) where the object is LA’ed to
the group. In case (c), the object is LA’ed and the subject is
SJ’ed. An SJ’ed subject can only access objects added after
join time. Thus (c) is also a failed case. Authorization is
successful in case (d) where both Add and Join are Liberal
operations. An LJ’ed subject can access all existing LA’ed
objects and new group objects. An LA’ed object can be
accessed by all existing and new group subjects. In short, an
LJ’ed subject can access any new group object and existing
LA’ed group objects.

ϕ2 ≡((¬SL ∧ ¬SR) S (LJ ∧ ((¬SR ∧ ¬LR) S LA)))

We can now formulate ϕ2 as shown above. Figure 9 illus-
trates ϕ2. It says that the subject has not been SL’ed and
the object has not been SR’ed since the subject LJ’ed the
group. Further, at Join time, the object in question was still
part of the group (that is, it has not been LR’ed or SR’ed
since it was added).

A Mixed g-SIS Model is a g-SIS model that supports
mixed group operations. We now state the authorization
policy for this model.

Definition 5.3 (Fixed g-SIS Model). A g-SIS model
is called a Fixed Model if it satisfies the following LTL for-
mula:

2(Authz ↔ ϕ1 ∨ ϕ2)

5.2.1 Deriving Fixed Operation Models

Intuitively, the Mixed g-SIS Model should subsume all
the 16 g-SIS models with fixed operations. And indeed,
it is straight-forward to derive any fixed operation model
by substituting operations that are not supported by that
model with “False” in the Mixed Model in definition 5.3.

Consider the Most Restrictive Model (definition 5.1): (SJ,
SL, SA, SR). We can derive the formula for this model by
substituting all unsupported operations with “False” in for-
mulas ϕ1 and ϕ2. Unsupported operations never occur (or
are ignored), so the corresponding events never occur. Note
here that ϕ2 fails on the whole since LJ is not allowed in
the Most Restrictive Model. By substituting “False” for LJ,
LL and LA in formula ϕ1, we get the same formula in defi-
nition 5.1. We similarly obtain the Most Permissive Model
(definition 5.2): (LJ, LL, LA, LR) by substituting “False”
for SJ, SL, SA and SR in formula ϕ1 and ϕ2. Similarly, we
easily derive another model with fixed operations, (LJ, SL,
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Figure 10: Mixed g-SIS Model with Restorative
Join.

LA, SR), as below:

λ1 ≡ (¬SL ∧ ¬SR) S (LA ∧ (¬SL S LJ)) (From ϕ1)

λ2 ≡ (¬SL ∧ ¬SR) S (LJ ∧ (¬SR S LA)) (From ϕ2)

And Authz for this model is stated as below:

2(Authz ↔ λ1 ∨ λ2)

Recall that we mentioned g-SIS models subsume the Secure
Multicast policies. In Secure Multicast, when a node joins
the group it can only access newly transmitted data and on
leave it may retain access to those received during member-
ship period. It is not clear if the notion of object operations
exist in multicast. Thus a g-SIS model that supports (SJ,
LL, SA/LA, SR/LR) operations is similar to the policies
allowed by multicast models.

5.2.2 Restorative Join

We now show how our Mixed g-SIS Model can be ex-
tended to support Restorative Join operations. Recall that
a Restorative Join explicitly restores access to objects au-
thorized during previous membership period as long as those
objects are still part of the group. A Mixed Restorative g-
SIS Model supports four Join operations: SJ and LJ (the
Non-Restorative Join operations) and SJ′ and LJ′ (their
Restorative counter-parts). Thus SJ′ is an SJ which further
restores past accesses (similarly LJ′)6. First, we re-write ϕ1

and ϕ2 to include Restorative Join operations (SJ′ and LJ′)
as shown below. Formula δ3 (see figure 10) says that the sub-
ject has not joined or left or the object has not been SR’ed
(formula δ2) since the subject joined the group in a restora-
tive manner (this check simply ensures that we are referring
to the most recent Join and that the Join is Restorative).
Further, the object has not been SR’ed since a point in the
past at which the subject was authorized (ϕ′

1∨ϕ′

2) to access
the object. It is easy to understand this formula by visualiz-
ing a subject who joins the group for the second time. The
first time the subject joins, the subject would be authorized
to access objects as per δ1. When the subject leaves and
re-joins the second time, it is possibly a Restorative Join.
At this point, formula δ3 allows access to objects authorized

6Note that the difference between LJ and LJ′ is subtle. They
both allow access to all existing and new group objects at
Join time. But they may differ in other ways. For example,
if an object has been LR’ed and the subject had past access
to it, LJ′ restores access whereas LJ does not.

during the first membership period.

ϕ
′

1 ≡ ((¬SL ∧ ¬SR) S ((SA ∨ LA) ∧ ((¬LL ∧ ¬SL)

S (SJ ∨ SJ′ ∨ LJ ∨ LJ′))))

ϕ
′

2 ≡ ((¬SL ∧ ¬SR) S ((LJ ∨ LJ′) ∧ ((¬SR ∧ ¬LR) S LA)))

δ1 ≡ (ϕ′

1 ∨ ϕ
′

2)

δ2 ≡ (SJ ∨ LJ ∨ SJ′ ∨ LJ′ ∨ SL ∨ SR)

δ3 ≡ (¬δ2 S ((SJ′ ∨ LJ′) ∧ (¬SR S δ1)))

We now define a g-SIS Model that supports Restorative Join
operations.

Definition 5.4 (Mixed Restorative g-SIS Model).
In a Mixed Restorative g-SIS Model, a subject is allowed to
access an object if it satisfies the following LTL formula:

2(Authz ↔ δ1 ∨ δ3)

In this model, a subject is authorized to access an object if:
(a) the access is authorized by the current membership (ϕ1∨
ϕ2) or (b) the access was authorized during past membership
period and there has been no SR since (δ3).

We have shown how the Mixed Model can be extended
to support Restorative Join. It is also possible to extend
this model to support other variations such as Lossy Join,
Restorative Leave, etc.

5.3 Verification of Core Properties
In this section, we discuss how we verified that the spec-

ification of the Mixed g-SIS Model (Definition 5.3) entails
the core g-SIS properties specified in section 3 using model
checking. Model checking [13, 14] is an automated verifi-
cation technique that analyzes a finite model of a system
(i.e., a finite state machine (FSM) that produces compu-
tation traces consisting of infinite sequences of states) and
exhaustively explores the state space of the model to deter-
mine whether desired properties hold in the model. In the
case that a property is false, a model checker produces a
counterexample consisting of a trace that violates the prop-
erty, which can be used to correct the model or modify the
property specification.

Symbolic Model Verifier (SMV) [24, 12] is a family of
model checking tools based on Binary Decision Diagrams
(BDDs). BDDs represent states very compactly. In SMV,
models are represented by using variables that are assigned
values in each step of the FSM. Properties to be checked are
specified by temporal logic [22] formulas. SMV verifies the
properties against the model and returns a counter-example
if the model does not satisfy the property.

The FSM we need to construct for the purpose of our
proof is very simple. The FSM (appendix A) simply models
a system where Join, Leave, Add and Remove events are
allowed to occur concurrently, non-deterministically and in
any order. Such an FSM produces all possible traces of
group events. We use the model checker to prove that our
LTL specification entails the core properties. We formalize
an implication having the well-formedness conditions and
the specification of the Mixed g-SIS model in the antecedent.
The consequence contains the required properties identified
here in earlier sections. Thus we verify that all traces that
satisfy the specification also satisfy the required properties.
This is a non-traditional use of the model checker in which
we use the tool as a theorem prover. Further, we force an
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Figure 11: Read-Write g-SIS model with versioning.

additional constraint that in the initial state, only a Join or
an Add can occur. This is a reasonable constraint because
at system initialization, there could be no subject or object
in the system for a Leave or Remove to occur. Suppose
σ0 denotes a conjunction of all of our core properties and
σ1 denotes the set of all well-formed traces from our FSM.
Formula σ should hold:

σ0 ≡ Core gSIS Properties

σ1 ≡ Legal gSIS Traces

σ2 ≡ (Authz ↔ ϕ1 ∨ ϕ2) (Definition 5.3)

σ ≡ (σ1 ∧ σ2 → σ0)

Note that σ2 above is our policy specification. We use the
model checker to verify that formula σ always holds. The re-
sults from NuSMV (a mature open source model checker) [12]
are shown in appendix A. We find that the core properties
are in fact satisfied by the g-SIS specification. Further, as
mentioned earlier, we show that Safety Properties can be
inferred from Overlapping Membership Property by using
the same approach. Formalizing our models and properties
using LTL allows us to rapidly verify any new property. Us-
ing this approach, verification of LTL specifications can be
easily automated using model checking.

6. FUTURE WORK
In this section, we discuss some of the research challenges

involved in developing this area of work. We identify a few
open problems in extending the current model to support
Read-Write operations and multiple groups.

6.1 Read-Write g-SIS Model
In the models we considered so far, we assumed that sub-

jects can Add new objects and perform only Read operations
on those objects. Let us now discuss some of the issues in
Read-Write g-SIS models. In a sense, a Read-only model can
simulate a Read-write model by removing, updating and re-
adding the object. While this is a feasible approach, there
are some critical issues in such a model. If an object is
removed and re-added, it is possible that subjects joining
the group between Remove and Add can access the object.
Re-adding changes the state of the object thereby possibly
authorizing additional subjects as a consequence. Such is-
sues force us to consider a “Write” or an “Update” operation
distinctly.

In general, we believe that a Read-Write model should
support versioning due to the distributed nature of the SIS
problem. It is unreasonable to expect concurrency control
since subjects may have intermittent connectivity to the
servers and may be allowed to access objects offline. Further,
such a solution does not scale well in an SIS scenario since a
large number of subjects may be collaborating on a specific
set of objects and locking objects for updating information
is highly inefficient and counter-productive. Versioning is
crucial to the usability of a Read-Write g-SIS model. How-
ever, there are many issues that need to be resolved in the

case of Read-Write g-SIS model with versioning.
Consider the scenario in figure 11 where a subject s is

SJ’ed to the group and object o is updated resulting in var-
ious versions. The first question is whether s should be al-
lowed to access o since v0 of o was added prior to s’s Join
time. While a simple answer could be no, it would not be
the most flexible model—recall that our Liveness property
requires that any object that is added after a subject joins
the group should be accessible. Practically, we would want
to support both options. Suppose s is allowed to access
o, is s allowed to access only v1 and v2 or also v0 of o?
Similarly, what should a Remove operation mean in such a
context? Suppose v1 is removed, can v0 exist? Should the
Remove operation have a cascade effect and wipe out all pre-
vious versions? Also, can v2 exist after v1 is removed? We
believe that a lot of these questions are dependant on the
object or information model and so the information sharing
model should accommodate all such options. Further, we
would have to re-visit the core and additional properties in
the context of Read-Write model. Would the core properties
be reasonable for Read-Write models? Are there any new
core/additional properties?

6.2 Hierarchical g-SIS Model
Let us now consider a g-SIS model in the context of multi-

ple groups. Clearly, it would not be useful (nor interesting)
to consider groups that are unrelated—they would simply be
independent groups. A natural way to create a structure is
to impose a hierarchy similar to Lattice-Based Access Con-
trol (LBAC) Models [29] for information flow [15] such as
Bell-LaPadula (BLP) [8], Biba [10], Chinese Wall [11], etc.
A hierarchical g-SIS model can be configured in many inter-
esting ways. Consider a hierarchy of g-SIS groups. A sub-
ject may only read objects at the same group or any lower
group. Note that an additional constraint would be subjects
can only read objects that are permitted by the g-SIS poli-
cies we specified in this paper. Similarly, subjects may only
add information at the same group or to higher groups. This
is similar to the BLP model for confidentiality (the labels in
BLP are similar to groups in g-SIS) but differs in that it
has an important temporal element for information sharing
within the same or across groups (or labels). This allows a
subject to protect information added from other subjects in
the same or higher levels. Similarly Chinese Wall policies
can be achieved in g-SIS with the notion of Lossy Join. An
interesting exercise is to see if the g-SIS models can simu-
late the LBAC models. An intuitive approach is to see if
g-SIS models can express RBAC [30] policies since it has
been shown that RBAC can be configured to enforce both
MAC and DAC policies [25]. A positive result would show
that g-SIS can simulate a whole range of information flow
models.

7. CONCLUSION
In this paper, we proposed a group-centric family of mod-

els for Secure Information Sharing. We identified a core
set of properties that should be satisfied by the g-SIS mod-
els. We also identified an additional set of properties in
light of many variations of group operations (Lossless, Lossy,
Restorative, Non-Restorative, Strict and Liberal). We for-
mally specified the properties using LTL making them suit-
able to be verified by using model checking which is a highly
efficient and re-usable technique. We formally specified a
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lattice of 16 g-SIS models with fixed group operations. On
the hand, we also specified a highly flexible model that al-
lows any variation of group operations. We showed that the
16 g-SIS models with fixed operations can be derived from
single authorization policy for the mixed operation model.
Finally, we formally proved by using model checking that the
final g-SIS specification semantically entails the core g-SIS
properties. Our future research in this line of work is along
two major directions as identified earlier. First, we are in-
terested in developing this model to support both read and
write operations. Next, we are investigating extensions to
g-SIS models in the context of multiple groups. The groups
could be highly structured like a hierarchy or completely
structure-less yet related.
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APPENDIX

A. MODEL CHECKING
The following NuSMV code listing simply allows group

events such as SJ, LJ, SR, etc. to occur concurrently in a
non-deterministic manner. This produces all possible traces.
We discard all the illegal traces based on our assumptions
in section 3 and verify that the specification entails the core
properties. Due to space constraints, we are only able to
show few results from NuSMV. The final output shows that
the specification does entail the Overlapping Membership
property. Further, the safety properties entail the overlap-
ping membership property as well. A more exhaustive anal-
ysis with counter-examples can be found at:
http://sites.google.com/site/nusmv24/.

Code Listing

MODULE main

VAR

SL: boolean;

LL: boolean;

SA: boolean;

LA: boolean;

SJ: boolean;

LJ: boolean;

SR: boolean;

LR: boolean;

authz: boolean;

DEFINE

join := SJ |LJ;

leave := SL|LL;

add := SA | LA;

remove := SR | LR;

xjoin := SJ xor LJ;

xleave := SL xor LL;

xadd := SA xor LA;

xremove := SR xor LR;

————————————–
–Legal Traces: LT
—————————————

–(LT & Mixed g-SIS authz) -> Overlapping – Mem-
bership Property

LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G (authz -> O (add & (!leave S join)) |

O (join & (!remove S add))))

–(LT & Mixed g-SIS authz) -> authorization –persistence

LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G (authz -> X ( (authz U (join | leave |

add | remove)) | G authz)))

--

–(LT & Mixed g-SIS authz) -> Subject liveness

LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G (join -> ( ( ( add -> ((authz U (leave | remove)) |

G authz) ) U leave ) | G( add -> ((authz U (leave |

remove)) | G authz)))))

--

–(LT & Mixed g-SIS authz) -> Object liveness

LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G ((add & (!leave S join)) -> ((authz U (leave |

remove)) | G authz)))

--

–(LT & Mixed g-SIS authz) -> subject safety prop-
erty
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LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G (leave -> ((H!add) -> ( ((!authz U join) |

G !authz) & ((!authz U add) | G !authz)))))

--

–(LT & Mixed g-SIS authz) -> object safety prop-
erty

LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G ((remove & (! O join)) -> ( ((!authz U join) |

G !authz) & ((!authz U add) | G !authz))))

--

–(LT & Overlapping Membership) ->
subject safety property

LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G (leave -> ((H!add) -> (((!authz U join)

| G !authz) & ((!authz U add) | G !authz)))))

–(LT & Overlapping Membership) -> object safety
property

LTLSPEC

(G (!(add & remove) & !(join & leave) &

(xjoin -> X ((!join U leave) | G !join)) &

(xleave -> X((!leave U join) | G!leave)) &

(xremove -> X((!remove U add) | G!remove)) &

(xadd -> X((!add U remove) | G!add))) &

(!remove U add) &

(!leave U join) &

(G ( authz <->

(((!SL&!SR) S ((SA|LA) & ((!LL&!SL) S (SJ|LJ)))) |

((!SL&!SR) S (LJ& ((!SR&!LR) S LA)))))))

->

(G ((remove & (! O join)) -> ( ((!authz U join) |

G !authz) & ((!authz U add) | G !authz))))

[User@localhost Desktop] NuSMV -int gsis.smv
*** This is NuSMV 2.4.3 (compiled on
Mon May 5 02:33:40 UTC 2008)
*** For more information on NuSMV see
<http://nusmv.irst.itc.it>
*** or email to <nusmv-users@irst.itc.it>.
*** Please report bugs to
<nusmv@irst.itc.it>.

NuSMV > go
NuSMV > check ltlspec

-- specification (((( G (((((!(add & remove) &

!(join & leave)) & (join -> X ((!join U leave)

| G !join))) & (leave -> X ((!leave U join) |

G !leave))) & (remove -> X ((!remove U add) |

G !remove))) & (add -> X ((!add U remove) |

G !add))) & (!remove U add)) & (!leave U join)) &

G (authz <-> (((!SL & !SR) S ((SA | LA) &

((!LL & !SL) S (SJ | LJ)))) | ((!SL & !SR) S

(LJ & ((!SR & !LR) S LA)))))) -> G (authz

-> ( O (add & (!leave S join)) | O (join &

(!remove S add))))) is true

NuSMV > print reachable states

############################################

system diameter: 1
reachable states: 512 (29) out of 512 (29)

############################################

NuSMV >
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Stale-Safe Security Properties for
Group-Based Secure Information Sharing

ABSTRACT

Attribute staleness arises due to the physical distribution of
authorization information, decision and enforcement points.
This is a fundamental problem in virtually any secure dis-
tributed system in which the management and representa-
tion of authorization state is not centralized. This problem
is so intrinsic, it is inevitable that access control will be
based on attribute values that are stale. While it may not
be practical to eliminate staleness, we can limit unsafe access
decisions made based on stale subject and object attributes.
In this paper, we propose and formally specify four stale-
safe security properties of varying strength which limit such
incorrect access decisions. We use Linear Temporal Logic
(LTL) to formalize these properties making them suitable
to be verified by using model checking. We show how these
properties can be applied in the specific context of group-
based Secure Information Sharing (g-SIS) as defined in this
paper. We specify the authorization decision/enforcement
points of the g-SIS system as a Finite State Machine (FSM)
and show how this FSM can be modified so as to satisfy
one of the stale-safe properties. We formally verify that this
FSM satisfies the stale-safe property using a mature model
checker called Symbolic Model Verifier (SMV).

1. INTRODUCTION

The concept of a stale-safe security property is based on
the following intuition. In a distributed system authorita-
tive information about subject and object attributes used for
access control is maintained at one or more secure authoriza-
tion information points. Access control decisions are made
by collecting relevant subject and object attributes at one or
more authorization decision points, and are enforced at one
or more authorization enforcement points. Because of the
physical distribution of authorization information, decision
and enforcement points, and consequent inherent network
latencies, it is inevitable that access control will be based on
attributes values that are stale (i.e., not the latest and fresh-
est values). In a highly connected high-speed network these
latencies may be in milliseconds, so security issues arising
out of use of stale attributes can be effectively ignored. In
a practical real-world network however, these latencies will
more typically be in the range of seconds, minutes and even
days and weeks. For example, consider a virtual private
overlay network on the internet which may have intermit-
tently disconnected components that remain disconnected
for sizable time periods. In such cases, use of stale attributes
for access control decisions is a real possibility and has se-
curity implications.

We believe that, in general, it is not practical to eliminate
the use of stale attributes for access control decisions.1 In
a theoretical sense, some staleness is inherent in the intrin-
1Staleness of attributes as known to the authoritative infor-
mation points due to delays in entry of real-world data is
beyond the scope of this paper. For example, if an employee
is dismissed there may be a lag between the time that action
takes effect and when it is recorded in cyberspace. The lag
we are concerned with arises when the authoritative informa-

sic limit of network latencies, of the order of milliseconds
in modern networks. We are more interested in situations
where staleness is at a humanly meaningful scale, say min-
utes, hours or days. In principle, with some degree of clock
synchronization amongst the authorization information, de-
cision and enforcement points, it should be possible to deter-
mine and bound the staleness of attribute values and access
control decisions. For example, a SAML assertion produced
by an authorization decision point includes a statement of
timeliness, i.e., start time and duration for the validity of
the assertion. It is upto the access enforcement point to
decide whether or not to rely on this assertion or seek a
more timely one. Likewise a signed attribute certificate will
have an expiry time and an access decision point can decide
whether or not to seek updated revocation status from an
authorization information point.

Given that the use of stale attributes is inevitable, the
question is how do we safely use stale attributes for access
control decisions and enforcement? The central contribution
of this paper is to formalize this notion of “safe use of a stale
property” in the specific context of group-based secure in-
formation sharing (g-SIS) as defined in this paper. We also
demonstrate specifications of systems that provably do and
do not satisfy this requirement as revealed by model check-
ing of the specifications. We believe this formalism can be
extended to more general contexts beyond the group-based
secure information sharing considered in this paper, but this
is beyond the current scope. We believe that the require-
ments for “safe use of a stale property” identified in this pa-
per represent fundamental security properties the need for
which arises in virtually any secure distributed systems in
which the management and representation of authorization
state is not centralized. In this sense, we suggest that we
have identified and formalized a basic security property, in
the same sense that non-interference [21] and safety [11] are
basic security properties that are desirable in a wide range
of secure systems.2

Specifically, we present formal specifications of four“stale-
safe” properties. The most basic and fundamental require-
ment we consider deals with ensuring that while authoriza-
tion data cannot be propagated instantaneously throughout
the system, it is highly desirable to ensure that a requested
action was definitely authorized at some point in the recent
past. With staleness we may allow the authorization to hold

tion point knows that the employee has been dismissed but
at some decision point the employee’s status is still showing
as active.
2The work of Lee et al [15, 16] is the closest to ours that we
have seen in the literature, but focuses exclusively on the use
of attribute certificates, called credentials, for assertion of
attribute values. Lee et al focus on the need to obtain fresh
information about the revocation status of credentials to
avoid staleness. As we will see our formalism is based on the
notion of a“refresh time,” that is the time when an attribute
value was known to be accurate. We believe the notion of
refresh time is central to formulation of stale-safe properties.
Because Lee et al admit only attribute certificates as carriers
of attribute information there is no notion of refresh time in
their framework.
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for longer than it should have, but there is no doubt that the
access was authorized in the past. Two additional require-
ments can be added to obtain properties that are stronger
with respect to when it is required that the action be au-
thorized. The first is that, to be permitted, it must be con-
firmed that a requested action is authorized at a point in
time after the request and before the action is performed.
The second requirement bounds the elapsed time between
the point at which the authorization is confirmed and the
point at which the action is performed. Because both of
these requirements can be added singly or in combination,
we obtain four different stale-safe properties.

We formalize these four properties in Linear Temporal
Logic (LTL), making them suitable to be verified by us-
ing model checking. We show how these properties can be
applied in the specific application domain of group-based
secure information sharing (g-SIS). We specify one compo-
nent of a g-SIS system as a finite state machine (FSM). We
present two FSM’s—one that does not and one that does
satisfy the weakest of our state-safe properties. We formally
verify the correct specification using model checking. We
also use the model checker to obtain an execution trace of
the incorrect FSM, which could be used by a designer to
correct that FSM.

In section 2, we discuss the group-based Secure Informa-
tion Sharing problem which will be used throughout the
paper to illustrate the stale-safe properties. In section 3,
we formalize the stale-safe security properties using Linear
Temporal Logic. We specify a weak and strong version of the
properties each of which is further restricted with a notion
of elapsed time between the time at the which the opera-
tion is authorized and performed. In section 4, we construct
a Finite State Machine (FSM) that enforces a specific pol-
icy for g-SIS. We formally verify the FSM against the weak
property stated in section 3 using Model Checking. We also
specify an FSM that appears to be a natural candidate for
g-SIS but fails this property. In section 5, we list related
work and we conclude in section 6.

2. GROUP-BASED SECURE INFORMATION

SHARING (g-SIS)
Secure Information Sharing (SIS) or sharing information

while protecting it is one of the earliest problems to be rec-
ognized in computer security, and yet remains a challenging
problem to solve. A detailed discussion of SIS problem mo-
tivation and solution approaches can be found in [14]. The
central problem is that copies of digital information are eas-
ily made and controls on the original typically do not carry
over to the copies. One approach tried in the past has been
to tie access control to each copy also so that copies are as
tightly controlled as the original. The most common form
of this approach is so-called mandatory or lattice-based ac-
cess control [28] where copies are also labeled to reflect se-
curity sensitivity of the original. More recently, an alter-
nate approach has emerged wherein plaintext unprotected
copies are prohibited, while encrypted protected copies can
be freely made. This implies that access controls need to
be enforced on the client machines where the content is de-
crypted and displayed, so as to ensure that only authorized
users get to see the content and that they are unable to make
plaintext unprotected copies. There has been considerable
interest in this approach, initially driven by the forces of

digital rights management for entertainment content seek-
ing to protect revenue but more generally seeking to protect
content for its sensitivity.

2.1 Objectives
The group-based SIS (g-SIS) problem [14] is motivated by

the need to share sensitive information amongst a group of
authorized users. For simplicity we only consider the case
of read access to the objects in the group. Every member of
the group is authorized to read group objects. For purpose
of this paper, we specify the following objectives for the g-
SIS problem. For brevity, the terms subjects and objects
refer to subjects and objects that belong to the group.

1. Objects are always protected (encrypted) and never
exists in plain text except when viewed.

2. Objects are assumed to be available via super-distribution.
This simply means that the objects are protected once
and subjects may access them when authorized—objects
are not individually prepared for each subject. We
limit super-distribution to occur within a group.

3. Subjects can access objects off-line without involving
the server using trusted access machines. The degree
of trust required on the access machines may vary de-
pending on the application and policy. In one case, the
access machines may be implicitly trusted because of
its physical location (e.g. access machines in an organi-
zation). In a completely distributed setting, a Trusted
Reference Monitor (TRM) needs to be present on the
access machines that can verify the integrity of the sys-
tem and enforce the authorization policies in a trust-
worthy manner [27, 20]. This can be achieved using
integrity measurements, remote attestation and other
features enabled by Trusted Computing Technology [2]
or software analogs of this technology.3

4. Each group has a Group Administrator (GA) who con-
trols group membership and policies. The GA can add
or remove subjects and objects from the group. We
do not specify how an admin is appointed. The admin
may or may not be a member of the group. Each group
also has a Control Center (CC), a server that main-
tains authoritative subject and object attributes and
provides group credentials to new members. Changes
in subject and object attributes or group policies are
updated by the GA at the CC and this change will
eventually be propagated to the subject’s access ma-
chines (discussed later in detail).

We now digress briefly to compare g-SIS with a related
problem –broadcast/multicast encryption. Member man-
agement in g-SIS scenario sharply differs from Secure Inter-
net Multicast. In multicast, as users join and leave a group,
remaining members go through a re-key process thereby re-
freshing the group key [24]. However, for secure information
sharing, such a requirement is extremely un-friendly because
members need not be always connected to a server to access
the objects. Thus, continuing our list of objectives, we have
the following.
3It is generally accepted that software-only solutions will
provide a lower degree of assurance than solutions with a
hardware root of trust. The issues discussed in this paper
are orthogonal to assurance so will apply to both software
and hardware based solutions.
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Figure 1: Subject and object membership states.

5. When a subject joins or leaves the group, remaining
members should not be affected. In other words, join
and leave of a subject should be completely oblivious
to other subjects. Remaining subjects should not be
forced to be online or go through a re-key process4.

6. Secure multicast focuses on maintaining forward and
backward secrecy of data [24]. Forward-secrecy re-
quires that a leaving subject should not be able to read
data that will subsequently be exchanged in the fu-
ture. Backward-secrecy requires that a joining subject
should not be able to read data exchanged amongst
the remaining subjects in the past. However, informa-
tion sharing may not be limited to forward and back-
ward secrecy. For g-SIS flexible membership policies
may be required. When a new user joins the group,
whether he can access any group objects created prior
to his membership is policy-dependant. Objects cre-
ated after he joins the group are accessible. When a
member leaves the group, whether he can continue to
access objects created during his membership period
is policy-dependant. However, he cannot access any
object exchanged in the future within the group.

2.2 Group Management and Policy Enforce-
ment

Subjects and objects in a group go through various states
as shown in figure 1. Different access policies are possible
depending on the relative state of subjects and objects . For
example, a current subject could be allowed access only to
current objects or also to objects created before the subject
joined the group. Similarly, a past subject may lose ac-
cess to all objects or retain access to objects created during
his membership period. When a subject rejoins the group,
he may either gain access to objects created during his past
membership or simply join the group as a new subject. Sim-
ilarly, many different object policies are possible. Detailed
discussions can be found in [14]. Each group may thus pick
a specific set of group-level access policies for subjects and
objects.

4Members should not be asked to re-key or contact a server
to get a new key. Note that re-keying is not an efficient solu-
tion in SIS as the member needs to keep track of which docu-
ment was encrypted with which key. As users join and leave
a group, the remaining members will need to go through a
re-key process resulting in encrypting documents with differ-
ent keys along the time line. One cannot discard the old key
(as done in multicast) as disseminated documents encrypted
with the old key continue to persist.

Figure 2 shows one possible enforcement model for the g-
SIS problem and illustrates the interaction of various com-
ponents in g-SIS. The Group Administrator (GA) controls
group membership and policies. The Control Center (CC) is
responsible for maintaining authoritative group credentials
and attributes of group subjects and objects on behalf of the
GA.

• Subject Join: Joining a group involves obtaining au-
thorization from the GA followed by obtaining group
credentials from the CC. In step 1.1, the subject con-
tacts the GA using an access machine and requests
authorization to join a group. The GA verifies that
the subject is not already a member and authorizes
the subject in step 1.2 (by setting AUTH to TRUE).
The subject furnishes the authorization to join the
group and the evidence that the access machine is in
a good software state to the CC in step 1.3. The CC
remotely verifies GA’s authorization, if the subject’s
access machine is trustworthy (using the evidence) and
has a known Trusted Reference Monitor (TRM) that
is responsible for enforcing policies. In step 1.4, the
CC provisions the attributes. sid is the Subject Id,
Join TS is the time-stamp of subject join (set to a non-
NULL value), Leave TS is the time at which a subject
leaves the group (initially set to NULL), gKey is the
group key using which group objects can be decrypted,
Policy is the group’s access policy, ORL is the Object
Revocation List which lists the objects removed from
the group.

• Policy Enforcement : From here on, the subject is con-
sidered a group member and may start accessing group
objects (encrypted using the group key) as per the
group policy and using the credentials obtained from
the CC. This is locally mediated and enforced by the
TRM. Note that the objects are available via super-
distribution and because of the presence of a TRM on
subject’s access machines, objects may be accessed of-
fline conforming to the policy. For example, the TRM
on an access machine may allow the subject to ac-
cess objects added after subject joined the group and
disallow access to objects added before he/she joined
the group. Such decisions can be made by using the
join and leave time-stamps of subject, add and remove
time-stamps of object and comparing their relative val-
ues. Objects may be added to the group by subjects by
obtaining an add time-stamp (setting an Add TS at-
tribute for the object) from the CC. We assume object
attributes are embedded in the object itself. Note that
due to super-distribution, the remove time-stamps for
objects cannot be embedded in the object (since there
could be many copies of the same object). Instead, an
Object Revocation List (with the remove time-stamps
of object ids) is provisioned on the access machine.

• Attribute Refresh: Since subjects may access objects
offline, the access machines need to connect to the CC
and refresh subject attributes periodically. How this
is done is a matter of policy and/or practicality. For
example, a refresh could take effect in an access ma-
chine based on time or a usage count. Offline access
to secure clock may be impractical in many circum-
stances. Usage count is a practical approach when us-
ing Trusted Computing Technology. A discussion on
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Figure 2: g-SIS System.

using the monotonic counters in the Trusted Platform
Module can be found in [30]. The usage count limits
the number of times the credentials may be used to
access group objects (like consumable rights). Thus
objects may be accessed until the usage count is ex-
hausted and the access machine will be required to re-
fresh attributes in step 3.1 and 3.2 before any further
access can be granted. Attributes RT and N represent
the refresh time-stamp and usage count of the subject
respectively.

• Administrative Actions: The GA may have to remove
a subject or object from the group or update group
policy. In step 4.1, the GA instructs the CC to remove
a subject. The CC in turn marks the subject for re-
moval by setting the subject’s Leave TS attribute in
step 4.2. This attribute update is communicated to
the subject’s access machine during the refresh step
3.1 and 3.2. In the case of object removal, the ORL
is updated with the object’s id and Remove TS. Pol-
icy updates (or any other update for that matter) are
handled in a similar manner as shown in step 5.1 and
5.2.

As you can see, there is a delay in attribute update in
the access machine that is defined by the refresh window.
Although a subject may be removed from the group at the
CC, the access machines will let subjects access group ob-
jects until the subject attributes are refreshed at the next
refresh step. This access violation is due to attribute stale-
ness that is inherent to any distributed system however short
the refresh window is. We discuss this topic in detail in the
subsequent sections. This paper does not focus on building
trusted systems to realize the architecture in figure 2 and it
is a work in progress. This is an area of active work and we
direct interested readers to [27] and [20], to cite a few.

3. STALE SAFE SECURITY PROPERTIES

FOR g-SIS
As discussed earlier, in distributed systems access deci-

sions are almost always based on stale-attributes and stale-
attributes lead to critical access violations. In this section we
propose Stale-safe Security Properties that limit such access
violations. Note that it is impossible to completely elimi-
nate staleness in practice and thus our intension here is best
effort. We first discuss a few scenarios were stale attributes
lead to access violations using the g-SIS example and infor-
mally discuss the stale-safe properties. We formalize them
next.
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Figure 3: Super-distribution.

3.1 System Characterization
The g-SIS system consists of subjects and objects, trusted

access machines (using which objects are accessed), a GA
and a CC. Access machines maintain a local copy of sub-
ject attributes which they refresh periodically with the CC.
Object attributes are part of the object itself. A removed
object is listed in the Object Revocation List (ORL), which
are provided to access machines as part of refresh. To eas-
ily illustrate the properties, we assume that each subject is
tied to an access machine from which objects are accessed
and there is a single GA and single CC per group. Also,
we assume that the refresh is based on usage count. Sup-
pose a policy that a subject is allowed to access an object as
long as both the subject and object are current members of
the group and the object was added after the subject joined
the group. Thus the g-SIS system can be characterized as
follows:

Subject attributes {id, Join TS, Leave TS,
ORL, gKey, RT, N}

Object attributes {id, Add TS}.
Refresh Time (RT) Access machine contacts CC to

refresh subject attributes and ORL.
Refresh Window (RW) Time interval between two RT’s

(depends on how quick the usage
count is exhausted).

Access Policy AuthzP(S, O, OP ) → O /∈ ORL(S)∧
Leave TS(S) = NULL∧
Join TS(S) ≤ Add TS(O).

Figure 3 illustrates super-distribution. An Author (a group
subject) creates an object, encrypts the object using the
group key (mediated by TRM) and sends it to the CC for
approval and distribution. The CC (or possibly a GA) ap-
proves the object, time-stamps object add and releases this
protected object for distribution. Since the object is pro-
tected, it is not necessarily guarded by the CC. Instead it is
made available to subjects by distribution through networks
such as WWW, email, etc. This infospace is called the Ob-
ject Cloud in figure 3. The User (another group subject)
can obtain these encrypted objects and store them locally
in his/her access machine. The sequence diagram in Fig-
ure 4 illustrates the staleness problem. The User and the
TRM interacts with the GA and CC in steps 1 to 5 to join
the group. The TRM refreshes attributes with the CC in
steps 6 and 7. Briefly after the refresh, the GA removes this
subject by setting his/her Leave TS attribute at the CC (a
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non-null value). Note that this step is not visible to the TRM
until the next refresh steps 11 and 12. In the mean time,
the User may request access to objects the were obtained via
super-distribution (step 9). “Create and Propagate” refers
to the scenario in figure 3. At this point, the TRM evaluates
the policy based on the attributes that it maintains. This
should be successful and the object is displayed to the user
in step 10. Note the difference in Leave TS values between
the CC and TRM. Only after the following refresh (steps
11 and 12) does the TRM notice that the subject has been
removed from the group and denies any further access (steps
13 and 14).

Figure 5 shows a timeline of events involving a single
group. Subject S1 joins the group and the attributes are
refreshed with the CC periodically. RT represents the time
at which refreshes happen. The time period between any two
RT’s is a Refresh Window, denoted RWi. After join, RW0

is the first window, RW1 is the next and so on. Suppose
RW4 is the current Refresh Window. Objects O1 and O2
were added to the group by some group subject (or the GA)
during RW2 and RW4 respectively and they are available to
S1 via super-distribution. In RW4, S1 requests access to
O1 and O2. An access decision will be made by the TRM
in the access machine as per the attributes obtained at the
latest RT.

As you can see, our access policy will allow access to both
O1 and O2. However it is possible that S1 was removed by
the GA right after the last RT and before Request(S1, O1, access)
in RW4 (see figure 4). Ideally, S1 should not be allowed to
access both O1 and O2.

From a confidentiality perspective in information sharing,
granting S1 access to O1 is relatively less of a problem than
granting access to O2. This is because the CC or the GA
can assume that S1 was always authorized access to O1 and
hence information has already been released to S1. In the
worst case, S1 continues to access the same information (O1)
until the next RT. However, S1 never had an authorization
to access O2 and letting S1 access O2 means that S1 has
gained knowledge of new information. This is a critical vi-
olation and should not be allowed. Such scenarios are what
our stale-safe security properties address. A subject cannot
access an object if it was added to the group after the last
refresh time even if the authorization policy allows access.
This can be achieved by comparing the Add TS (O) with
the most recent refresh time-stamp (RTrecent). Thus the ac-
cess decision for a stale-safe g-SIS system should be made
as follows:

Access Policy AuthzP(S, O, OP ) → O /∈ ORL(S)∧
Leave TS(S) = NULL∧
Join TS(S) ≤ Add TS(O).

Stale-safe Property SafeP (S, O) → Add TS (O) < RTrecent

Stale-safe Access AuthzP(S, O, OP ) ∧ SafeP(S, O)
Policy

The property we discussed considers attributes to be stale
if it is time-stamped later than the last refresh time-stamp
of the access machine. A more strict property may require
the access machine to refresh attributes before granting any
access. That is, when S1 requests access to O1, the stricter
version of the stale-safe property mandates that the access
machine refreshes the subject attributes before making an
authorization decision. Further, it is natural to consider

Figure 4: Staleness Illustration.
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Figure 5: Events on a time line to illustrate stale-
safe properties in g-SIS.

elapsed time since the last refresh to be an important issue
in limiting staleness of authorization data. We formalize
these notions in the following subsection.

3.2 Formal Property Specification
In this section we use Linear Temporal Logic (LTL) [18] to

specify four different formal stale-safety properties of vary-
ing strength. Temporal logic is a specification language for
expressing properties related to a sequence of states in terms
of temporal logic operators and logic connectives (e.g., ∧ and
∨). Temporal logic operators are of two types: Past and Fu-
ture. The past operators -© and Since (read previous and
since respectively) have the following semantics. -© p means
that the formula p was true in the previous state. Note that
-© p is false in the very first state. p Since q means that

q has happened sometime in the past and p has held con-
tinuously following the last occurrence of q to the present.
The future operators ©, ⋄, and 2 represent next state, some
future state, and all future states respectively. For example,
2p means that formula p is true in all future states. Also,
the formula p until q (read p until q) means that q will occur
sometime in the future and p will remain true at least until
the first occurrence of q.

Our formalization uses the following predicates:
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Figure 6: Access Policy (AuthzP).

Figure 7: Formula ϕ0.

request (S, O, OP ) The subject requests to perform
an action OP on an object.

AuthzP (S, O, OP ) S is authorized to perform
an action OP on O.

Join (S) and Leave (S) Subject Join and Leave events.
Add (O) and Remove (O) Object Add and Remove events.
perform (S, O, OP ) S performs an action OP

on O in the current state.
RT (S) The TRM contacts the CC to

update subject attributes.

In the forthcoming formulae (ϕ0, ϕ1 and ϕ2) and through-
out this paper, we drop the corresponding parameters S, O
and OP in these predicates for clarity. They should how-
ever be interpreted with the respective semantics described
above.

3.2.1 Stale-unsafe Access Decision

We first formalize a stale-unsafe access decision using the
access policy discussed in section 3.1 as an example. AuthzP

below is the same policy represented using LTL. Formula ϕ0

formalizes an access decision that is stale-unsafe.

AuthzP ≡ (¬Remove ∧ ¬Leave) Since ((Add∧

¬Leave) Since Join)

ϕ0 ≡ -© (¬perform ∧ (¬RT ∨ (RT ∧ AuthzP)))

Since (request ∧ AuthzP)

Figure 6 illustrates AuthzP. AuthzP says that S is allowed
to perform an action OP on O if prior to the current state
the object was added to the group and both the subject
and object have not left the group since. Also, the subject
joined the group prior to the time the at which the object
was added to the group and has not left the group ever since.

Figure 7 illustrates formula ϕ0. ϕ0 says that the operation
was authorized at the time of request. Prior to the current
state, the operation has not been performed since it was re-
quested. Also since it was requested, any refreshes that may
have occurred indicated that the operation was authorized
(¬RT ∨ (RT ∧ AuthzP)).

Definition 3.1 (Staleness Unaware). A Finite State
Machine (FSM) is staleness unaware if it satisfies the fol-
lowing LTL formula:

2(perform → ϕ0)

Figure 8: Formula ϕ1.

Figure 9: Formula ϕ2.

Observe that in a Staleness Unaware FSM, verifying that
AuthzP holds at the time of request will allow the subject
access objects that were added during the time between RT
and (request∧AuthzP) in figure 7. This can be clearly seen
by converging AuthzP in figure 6 with that in figure 7. As
discussed earlier, it is unsafe to let group subjects access
these objects before a refresh can confirm the validity of
their group membership.

We now specify stale-safe security properties of varying
strength. The weakest of the properties we specify requires
that a requested action be performed only if a refresh of
subject attributes and ORLs has shown that the action was
authorized at that time. This refresh is permitted to have
taken place either before or after the request was made. The
last refresh must have indicated that the action was autho-
rized and all refreshes performed since the request, if any,
must also have indicated the action was authorized. This is
the weak stale-safe security property. By contrast, the strong
stale-safe security property requires that the confirmation of
authorization occur after the request and before the action
is performed.

3.2.2 Weak Stale-safe Security Property

Let us introduce two formulas formalizing pieces of stale-
safe security properties. Intuitively, ϕ1 can be satisfied only
if authorization was confirmed prior to the request being
made. On the other hand, ϕ2 can be satisfied only if au-
thorization was confirmed after the request. Note that weak
stale safety is satisfied if either of these is satisfied prior to
a requested action being performed.

ϕ1 ≡ -© (¬perform ∧ (¬RT ∨ (RT ∧ AuthzP)))

Since (request ∧ (¬RT Since (RT ∧ AuthzP)))

ϕ2 ≡ -© (¬perform ∧ ¬RT) Since (RT ∧ AuthzP ∧

((¬perform ∧ (¬RT ∨ (RT ∧ AuthzP))) Since request))

Figure 8 illustrates formula ϕ1. ϕ1 says that prior to the
current state, the operation has not been performed since
it was requested. Also since it was requested, any refreshes
that may have occurred indicated that the operation was
authorized (¬RT ∨ (RT ∧ AuthzP)). Finally, a refresh must
have occurred prior to the request and the last time a re-
fresh was performed prior to the request, the operation was
authorized.

Observe that formula ϕ1 mainly differs from ϕ0 on the
point at which AuthzP is evaluated. Referring to figure 8,
evaluating AuthzP at the latest RT guarantees that requests
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to access any object that may be added during the following
refresh window will be denied.

Note that ϕ1 is satisfied if there is no refresh between
the request and the perform. It requires that any refresh
that happens to occur during that interval indicate that the
action remains authorized. In our g-SIS application, this
could preclude an action being performed, for instance, if
the subject leaves the group, a refresh occurs, indicating
that the action is not authorized, the subject rejoins the
group, and another refresh indicates that the action is again
authorized. For some applications, this might be considered
unnecessarily strict.

Figure 9 illustrates formula ϕ2. ϕ2 does not require that
there was a refresh prior to the request. Instead it requires
that a refresh occurred between the request and now. It
further requires that the operation has not been performed
since it was requested and that every time a refresh has
occurred since the request, the operation was authorized.

Note that ϕ2 can be satisfied without an authorizing re-
fresh having occurred prior to the request, whereas ϕ1 can-
not. Thus, though ϕ2 ensures fresher information is used to
make access decisions, it does not logically entail ϕ1 as it is
satisfied by traces that do not satisfy ϕ1.

We call perform → ϕ1 backward-looking stale safety, as it
does not require that a confirmation of authorization occur
after the request has been received. We call perform → ϕ2

forward-looking stale safety, as it requires that confirmation
of authorization is obtained after the request, before the
action is performed.

Definition 3.2 (Weak stale safety). An FSM has
the weak stale-safe security property if it satisfies the fol-
lowing LTL formula:

2(perform → (ϕ1 ∨ ϕ2))

3.2.3 Strong Stale-safe Security Property

Forward-looking stale safety is strictly stronger than weak
stale safety. For this reason, and because, unlike backward-
looking stale safety, it is a reasonable requirement for con-
trolling many operations, we give it a second name.

Definition 3.3 (Strong stale safety). An FSM has
the strong stale-safe security property if it satisfies the fol-
lowing LTL formula:

2(perform → ϕ2)

3.2.4 Quantifying “Freshness" of Authorization

Let us now consider how to model requirements that con-
strain the actual time at which actions such as attribute re-
fresh occur. For this we introduce a sequence of propositions
{Pi}0≤i≤n that model n time intervals (owing to the propo-
sitional nature of LTL, we can model only a finite number
of time intervals.). These propositions partition each trace
into contiguous state subsequences that lie within a single
time interval, with each proposition becoming true imme-
diately when its predecessor becomes false. They can be
axiomatized as follows:

P1 Until (2¬P1∧

(P2 Until (2¬P2∧

(P3 Until (...

Until (2¬Pn−1 ∧ 2Pn)...)))))

We now formulate variants of ϕ1 and ϕ2 that take a pa-
rameter k indexing the current time interval. These formu-
las use two constants, ℓ1 and ℓ2 which represent the number
of time intervals since the authorization and the request,
respectively, that is considered acceptable to elapse prior
to performing the requested action. The formulas prohibit
performing the action if either the authorization or the re-
quest occurred further in the past than permitted by these
constants.

ϕ1(k) ≡ -© (¬perform ∧ (¬RT ∨ (RT ∧ AuthzP))) Since

(request ∧
_

max(0,k−ℓ2)≤i≤k

Pi∧

(¬RT Since (RT ∧ AuthzP ∧
_

max(0,k−ℓ1)≤i≤k

Pi))))

ϕ2(k) ≡ -© (¬perform ∧ ¬RT) Since

(RT ∧ AuthzP ∧
_

max(0,k−ℓ1)≤i≤k

Pi ∧

((¬perform ∧ (¬RT ∨ (RT ∧ AuthzP))) Since

(request ∧
_

max(0,k−ℓ2)≤i≤k

Pi))

With these formulas, we are now able to state variants
of weak and strong stale safety that require timeliness, as
defined by the parameters ℓ1 and ℓ2.

Definition 3.4 (Timely, weak stale safety). An
FSM has the timely, weak stale-safe security property if it
satisfies the following LTL formula:

2(
^

0≤k≤n

(perform ∧ Pk) → (ϕ1(k) ∨ ϕ2(k)))

Definition 3.5 (Timely, strong stale safety). An
FSM has the timely, strong stale-safe security property if it
satisfies the following LTL formula:

2(
^

0≤k≤n

(perform ∧ Pk) → ϕ2(k))

3.3 Stale-safe Systems
We discuss the significance of the weak and strong stale-

safe properties in the context of stale-safe systems designed
for confidentiality or integrity. Confidentiality is concerned
about information release while integrity is concerned about
information modification. Both weak and strong properties
are applicable to confidentiality –the main trade-off between
weak and strong here is usability. Weak allows subjects to
read objects when they are off-line while strong forces sub-
jects to refresh attributes with the server before access can
be granted. Depending on the security and functional re-
quirements of the system under consideration, the designer
has the flexibility to choose between weak and strong to
achieve stale-safety. In the case of integrity, the weak prop-
erty can be risky in many circumstances –the strong prop-
erty is more desirable. This is because objects modified by
unauthorized subjects may be used/consumed by other sub-
jects before the modification can be undone by the server.
For instance, in g-SIS, a malicious unauthorized subject (i.e.
a malicious subject who has been revoked group membership
but is still allowed to modify objects for a time period due to
stale attributes) may inject bad code and share it with the
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group. Other unsuspecting subjects who may have the priv-
ilege to execute this code may do so and cause significant
damage. In another scenario, a malicious subject may inject
incorrect information into the group and other subjects may
perform certain critical actions based on faulty information.
Thus, although both weak and strong properties may be ap-
plicable to confidentiality and integrity, the weak property
should be used with a caveat in the case of integrity.

3.4 Extensions
In the earlier section, we discussed the most fundamental

stale-safe properties. We now consider stale-safety in the
context of a truly distributed system with multiple access
machines for a subject, multiple CC’S and GA’s and mul-
tiple group memberships of subjects and objects. As you
can see, this is a broad and complex problem that requires
in-depth research and is beyond the scope of this paper.
However, we informally articulate the staleness problem and
desirable properties in such a scenario.

• Multiple Access Machines : Consider a scenario where a
group subject may access group objects from multiple
access machines. Each machine maintains a local set of
attributes and they are not only stale with respect to
the CC but also with respect to other access machines.
If not careful, a subject may maintain various mem-
bership states across multiple access machines. For
example, the same subject could be current member
in one machine, but could leave the group and rejoin
from another machine. As per our access policy ear-
lier, the subject ends up accessing two sets of objects
from two different machines –one as a current mem-
ber and the other as a rejoined member at the same
time5. Such violations may be serious in the context
of mutual exclusion. Thus the stale-safe property for
multiple access machines should make sure that the
subject’s membership state is consistent across all the
machines. When a subject attempts to rejoin a group
from one access machine, the CC should instruct the
TRM’s on subject’s other access machines to revoke
all access until the subject leaves and rejoins on all
machines.

• Multiple CCs: Recall that the GA updates subject at-
tributes at the CC which in turn is updated at the sub-
ject’s access machine during a refresh. This property
deals with attribute staleness with respect to GA’s up-
dates in the case of multiple CCs. A GA may update
attributes at one CC and the attributes at other CCs
remain stale until this update is propagated across all
the CCs. In such a scenario, a refresh from one of
the CCs by the access machine may turn out to be
stale. The stale-safe property for multiple CCs should
make sure that the access machine will be allowed to
update attributes only if the attributes at the CC are
more recent than that of the access machine. Suppose
the CC maintains a subject attribute LU TS that is
the time-stamp of the last update received from the
GA for that subject. And the access machine main-
tains an attribute LSR TS that is the time-stamp of
the lastest refresh when that refresh actually resulted

5Note that this may not be a problem if the policy lets
subjects retain access to past objects.

in a real attribute update. Then an access machine
can refresh subject attributes only if the LU TS (S) >
LSR TS (S).

• Multiple Groups (non-hierarchical): In the case of mul-
tiple groups, an object from one group could be shared
with another. We call the group that owns the object
source group. If the object is removed from the source
group, attribute staleness could let other group sub-
jects retain access.
A. If an object is removed from the source group, it
should also be removed from other groups with which
the object is shared.
B. If a subject is revoked access to an object from one
group, he should also be revoked access to that ob-
ject from any other membership group with which it
is shared.

• Multiple Groups (hierarchical): Consider hierarchical
groups where subjects in higher level groups have ac-
cess to objects at or below its hierarchical level. Thus
the subjects in the leaf groups have access only to a sin-
gle group and subjects at the root groups have access
to objects of all group in the hierarchy. Suppose that
each level has its own CC. In order to limit staleness,
an access policy should use the appropriate subject and
object attributes from respective groups in question:
A. An access decision for the subject should be made
based on the object attributes from the source group
and subject attributes from the subject’s highest hier-
archical membership group.
B. When a subject leaves a group and joins any group
at the lower level of the hierarchy, he/she should be re-
voked access to any object that he/she retains access
from past group6.

4. MODEL CHECKING g-SIS
Model checking [6, 7] is an automated verification tech-

nique that analyzes a finite model of a system (i.e., a fi-
nite state machine (FSM) that produces computation traces
consisting of infinite sequences of states) and exhaustively
explores the state space of the model to determine whether
desired properties hold in the model. In the case that a
property is false, a model checker produces a counterexam-
ple consisting of a trace that violates the property, which
can be used to correct the model or modify the property
specification.

SMV [22, 5] is a family of model checking tools based on
binary decision diagrams (BDDs). BDDs represent states
very compactly. In SMV, models are represented by using
variables that are assigned values in each step of the FSM.
Properties to be checked are specified by temporal logic [23]
formulas. SMV provides built-in finite data types, such as
boolean, enumerated type, integer range, arrays, and bit
vectors. In SMV, the initial state is defined by assigning ini-
tial values to state variables. State transitions are specified
by assigning values to be assumed by each state variable x
in the next state, which is denoted by next(x). Each such
value is given by an expression over variables in either the
current or the next state. The assignments are effectively
performed simultaneously to obtain the subsequent state.

6Note that this property may not be applicable to all group
policies.
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SMV allows nondeterministic assignment, i.e., the value of
variable is chosen arbitrarily from the set of possible values.

The set of next assignments execute concurrently in a step
to determine the next state of the model. SMV allows non-
deterministic assignment, i.e., the value of variable is chosen
arbitrarily from the set of possible values. SMV supports
macros, which are replaced by their definitions, so they do
not increase the system’s state space.

The model checker we use in this work supports only fu-
ture temporal operators (“in the next state,” “in all future
states,”“in some future state,” and “until”), so the formulas
expressing stale safety in section 3.2 have to be reformulated
in this restricted form.

In this section, we use model checking (with SMV) to ver-
ify the weak stale-safe property for g-SIS. Model checking
the entire g-SIS system with CCs, GAs and multiple groups
is out of scope for this paper (please see discussions in Fu-
ture Work). Instead, we model check the Trusted Reference
Monitor (TRM) that is responsible for enforcing the access
policies in the subject’s access machine. Please see the Ap-
pendix for code, the properties that are verified and the
results obtained from SMV.

4.1 Formal Verification of the Trusted Refer-
ence Monitor

In modeling the TRM, one of the first things to decide
is how a refresh of subject attributes is forced so that the
TRM periodically updates attributes with CC. Recall that
we discussed various approaches: refresh based on timeout,
usage count, etc. We could further use rate limits or a com-
bination of these approaches. The TRM we consider models
refresh based on usage count7. The CC/GA determines a
usage count for each subject that specifies the number of
times the group credentials (e.g. group key) may be used
by the TRM to access objects off-line before a refresh is re-
quired. Suppose N is the usage count. Every time a subject
accesses an object, N is decremented by the TRM. Once
N reaches zero for that subject, the TRM denies access to
any object until the attributes are refreshed by the access
machine with the CC. As part of this refresh, N is reset to
the initial value.

The TRM includes one FSM for each object available at
the access machine. We discuss the formal verification of an
object machine, FSMobject, against the Weak Stale Safety
property (Definition 3.2). Figure 10 shows one possible de-
sign of FSMobject to enforce an authorization policy given by
AuthzE. Staleness is not considered in this machine. The
predicate AuthzE is (¬Remove TS(O) ∧ ¬Leave TS(S) ∧
(Join TS(S) ≤ Add TS(O))), indicating that the object O
has not been removed from the group, subject S has not left
the group, and the subject S joined the group before the
object O was added. This is the same as the LTL formula
AuthzP discussed in section 3 except that we now use at-
tributes that can be directly coded in SMV8. We label state
transitions using the format e[C]/A, in which e is the event,

7This is chosen due to the lack of availability of any practi-
cal solution for a secure off-line source of time today. The
Trusted Platform Module [2] provides a monotonic counter
and hence we choose to develop and model check a usage
count based TRM that can be later implemented. Our dis-
cussions remain valid irrespective of the approach we take.
8Note that the check for the presence of the object in ORL
is simplified and simulated as an event in SMV. This event
results in setting the boolean attribute Remove TS(O) to

C is the condition that has to be satisfied to enable the tran-
sition, and A represents actions that need to be performed
when the transition is taken.

The FSMobject is responsible for mediating request from
the subject to access the object to which it corresponds.
It remains in the idle state until a request to access the
object arrives from the subject. At this point, FSMobject

checks the authorization policy (AuthzE) to decide whether
the subject can access the requested object. There are then
three possible paths the FSM can take, depending on which
condition is satisfied:

Request[¬AuthzE]: If AuthzE fails, FSMobject rejects the
request and remains in the idle state. This is the request
transition that starts and ends at the idle state. The Refresh
transition captures attribute updates received from the CC
triggered by other instances of FSMobject running on behalf
of the same subject.

Request[AuthzE ∧ N = 0]: If AuthzE succeeds, but the
usage count is exhausted, the machine is required to refresh
attributes before any access can be granted. A refresh re-
quest action (RefreshREQ) is initiated in this case. This cre-
ates a synchronizing event (transitions labeled Refresh in the
idle, authorized and refreshed states) for all the FSMobject

instances in the local TRM, which has the effect of updating
all subject attributes, as well as the ORL, with the values
that are current at the CC. The synchronous event simply
ensures that the update is atomic with respect to transitions
at every FSMobject. After the refresh, the FSMobject then
enters the refreshed state. It again checks the authoriza-
tion policy to see whether the subject is now allowed the
requested access in light of the updated attribute values. If
AuthzE holds, the FSM directly enters the authorized state
from which it transitions to idle while decrementing the us-
age count. If AuthzE does not hold, the FSM denies access
and immediately returns to idle.

Request[AuthzE ∧ N > 0]: If AuthzE succeeds and the
usage count N is not exhausted, the machine enters the au-
thorized state and waits for the subject to access the object.
The requested action is performed only after re-checking
the policy AuthzE and decrementing the usage count. This
re-checking is critical because AuthzE checked earlier may
no more hold due to updated attributes received from the
Refresh transition which could possibly be triggered by an-
other instance of FSMobject. We discuss this in more detail
in the following paragraph. FSMobject thereafter returns to
the idle state.

Consider the self-transitions labeled Refresh in idle, authorized
and refreshed states. It is needed to allow refreshes initiated
by other FSMobject’s to occur atomically with respect to
other transitions. A subject could request access to multiple
objects; a separate instance of FSMobject runs for each such
object. A problem may arise due to a possible lag between
the time at which the access was authorized (after which the
FSMobject is in the authorized state) and the time at which
the subject actually performs the access. Suppose S1 is al-
lowed to access object O1 and that O1’s FSMobject enters
and remains in the authorized state until S1 performs the
action. In the meantime, S1 requests and performs access on
multiple objects and exhausts the usage count. Finally when
an access request for an object O2 is initiated, the FSMobject

of which forces a refresh because the usage count ran out.
This illustrates that fact that multiple refreshes can occur

TRUE.
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Figure 10: Stale-unsafe FSMobject.

when FSMobject is in the authorized state for O1. When S1
actually performs the access of O1, it may no longer be au-
thorized due to updated attributes. Such refreshes are per-
mitted by the self-transition from the authorized state back
to itself. When a refresh response is received by any instance
of FSMobject, it is broadcasted to all other instances, and the
attributes are updated in every machine. In this way, when
a perform is generated, AuthzE uses the latest attributes to
verify policy. Thus when the FSMobject instance for O2 has
updated attributes, it sends those updated attribute values
to all running instances of FSMobject. Consequently, when
S1 performs the action, it may not be correct to allow access
to O1, due to updated attributes and failed AuthzE. Thus
checking the policy AuthzE at both request and perform
time is critical for the correctness of FSMobject.

Code listing B in appendix A.2 shows the construction
of FSMobject using SMV and properties that are verified
against it. As shown, the backward-looking stale safety
property (formula ϕ1, section 3.2) does not hold. The model
checker immediately detects and reports the problem with
a counter example. Note that the property is re-formulated
using future temporal operators only which can be model
checked using SMV. The FSMobject in figure 10 is not stale-
safe because it allows access to objects that were added after
the last refresh time. This problem is fixed in figure 11 which
we discuss in the following subsection.

4.1.1 Stale-safe TRM

Figure 11: Stale-safe FSMobject.

Figure 11 is one of many approaches to build a stale-safe
FSMobject. As you can see, the only difference from fig-
ure 10 is the extra check for stale attributes (in our case
Stale is RT TS ≤ Add TS(O)). The transition from idle
to authorized is enabled if the authorization policy suc-
ceeds, the usage count is still available and the attributes
are not stale (i.e., Add TS(O) < RT TS). The transition
from idle to refreshed is enabled if the authorization policy
is successful but either the attributes are stale or the off-
line usage limit is reached. From refreshed, FSMobject en-
ters authorized state if AuthzE still holds with the refreshed
attributes else it returns to idle. Thus this machine sat-
isfies formula ϕ1 (backward-looking stale-safety) when the
attributes are not stale, and it satisfies formula ϕ2 (forward-
looking stale-safety) when the attributes are stale.

Code Listing A in appendix A.2 shows an SMV implemen-
tation of this machine. The result for this machine, which
we have verified by using the model checker, is discussed in
appendix A.1. It is also possible to construct machines that
will satisfy the other properties we discussed earlier.

5. RELATED WORK
Security requirements express the goals for protecting the

confidentiality, integrity, and availability of cyber systems.
There has been substantial work on developing models and
policy languages for addressing these security concerns. Ac-
cess control lies at the heart of system security [29]. Formal
specification and verification techniques and tools, such as
model checking, have been increasingly leveraged to verify
security properties of access control systems [8, 13, 32, 3, 9,
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19, 31, 34]
Zhang et. al. [34] developed a model checking approach

to examine the access right of a group of principles. The
access control is modeled in the RW language, which is a
propositional logic-based policy language to express reading
and writing access [10]. May et. al. [19] formalize the rules
of Health Insurance Portability and Accountability Act into
an extended access control matrix, which can be analyzed
by model checker SPIN.

Security analysts of access control systems and policies
have increasingly leveraged automated tool support to ver-
ify properties in support of security objectives. Jha et al. [13]
verify such properties as authorization, availability, and shared
access of the SPKI/SDSI policy language through the use of
a language containment type of model checking.

Sistla et. al. [32] provides a framework for reasoning about
security analysis of dynamic RT policies. Of significant value
is their proof of a tight EXPTIME complexity for role con-
tainment queries. Additionally, they describe a structure to
verify security properties using an explicit model checking
approach.

Fisler et al. [8] analyzes the impact of policy changes on
role-based access control (RBAC) systems using their Mar-
grave tool. Such policies are represented as multi-terminal
BDD’s for efficient storage and manipulation. They suc-
cessfully verify the separation of duty properties in RBAC
system.

Schaad et al. [31] also verifies separation of duty properties
in RBAC systems, but uses a mature model checking tool
called NuSMV.

In addition, security analysis that answers the question
whether security stake-holders can cause the authorization
system to enter a state, in which certain queries (e.g., safety
or liveness properties) hold or fail to hold, has been auto-
matically performed [12, 17, 33, 25, 26], via the SMV family
of model checkers.

6. CONCLUSIONS AND FUTURE WORK
Attribute staleness is inherent to any distributed system

and can result in serious access violations. In this paper,
we proposed stale-safe security properties using the group-
based Secure Information Sharing problem as an example.
We formalized four stale-safe properties of varying strengths
using Linear Temporal Logic amenable to formal verification
using Model Checking. Model Checking is a powerful and
flexible approach to verify security properties of large and
complex systems such as g-SIS. We designed and verified
the Trusted Reference Monitor resident in access machines
that satisfies the weak stale-safe property. We believe that
these properties can be generalized to any distributed ap-
plications using Attribute-based Access Control with minor
extensions/modifications if any. Our next steps are along
three exciting areas:

In section 3, we identified staleness problem in the con-
text of multiple CCs, multiple groups and multiple access
machines and proposed extensions. We believe studying
and formalizing these extensions is valuable to build systems
with flexible stale-safe properties.

Verifying the complete g-SIS system is a major future
work. This is a complex problem which is composed of mul-
tiple FSMs for TRM, CC and GA. All these machines need
to handle various operations such as membership manage-
ment of subjects and objects, provisioning group credentials,

multiple group memberships, etc.
Implementation of g-SIS is a work in progress and many

approaches are possible. The access machines need to have
a Trusted Computing Base (TCB) that has a hardware and
software component. The TPM (although not the only trusted
hardware infrastructure required) provides the hardware root
of trust. The software component comprises of a trustwor-
thy kernel (possibly a microkernel like L4 [1] or a VMM [4])
and the TRM.
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APPENDIX

A. MODEL CHECKING USING NUSMV
Expression operators !, &, |, and -> represent logical op-

erators “not”, “and”, “or” and “implies”, respectively. Com-
ments follow the symbol “- -”. Further, the symbols F , X
and U represent the future temporal operators eventually,
next, and until respectively (please refer section 3.2).

The set of next assignments execute concurrently in a step
to determine the next state of the model. SMV allows non-
deterministic assignment, i.e., the value of variable is chosen
arbitrarily from the set of possible values. SMV supports
macros, which are replaced by their definitions, so they do
not increase the system’s state space.

A.1 Stale-safe TRM
Code listing A is an SMV implementation of the stale-

safe FSMobject shown in figure 11. Note that the property
that is verified is ϕ1 (stated as LTLSPEC towards the end).
It is re-formulated using the future temporal operators. As
reported by SMV, figure 11 satisfies the Weak Stale Safety
property. The second property simply makes an additional
check that it is always the case, if a subject is able to perform
an action on an object then that object was added before
the last refresh time. SMV confirms that this is indeed the
case.

Code Listing A

MODULE main

VAR

--declare attributes

r_ts : 0..100;

leave_ts : boolean;

remove_ts : boolean;

join_ts : {2,18};

--usage count

N : 0..5;

--clock ticks
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ticks : 1..10;

--declare events

--input event from subject

request_event : boolean;

--the latched request_event

request : boolean;

--refresh event received from the CC

refresh : boolean;

--action perform

perform : boolean;

--input event representing if subject has left

leave : boolean;

--input event representing if object has been removed

remove : boolean;

-- declare states

idle : boolean;

authorized : boolean;

refreshed : boolean;

DEFINE

add_ts := 10;

stale := r_ts <= add_ts;

authzE := (add_ts > join_ts) &

(!leave_ts) & (!remove_ts);

authzSS := authzE & !stale & (N>0);

ASSIGN

init(join_ts) := {2,18};

next(join_ts) := join_ts;

init(leave_ts) := 0;

next(leave_ts) := case

idle & refresh & leave : 1;

idle & request & !refresh &

authzE & (stale | N=0) & leave : 1;

authorized & refresh & leave : 1;

refreshed & refresh & leave : 1;

1 : leave_ts;

esac;

init(remove_ts) := 0;

next(remove_ts) := case

idle & refresh & remove : 1;

idle & request & !refresh &

authzE & (stale | N=0) & remove: 1;

authorized & refresh & remove : 1;

refreshed & refresh & remove : 1;

1 : remove_ts;

esac;

init(r_ts) := join_ts;

next(r_ts) := case

idle & refresh & (r_ts <= 90) : r_ts + ticks;

idle & request & !refresh & authzE &

(stale | N=0) & (r_ts <= 90): r_ts + ticks;

authorized & refresh & (r_ts <= 90) : r_ts + ticks;

refreshed & refresh & (r_ts <= 90) : r_ts + ticks;

1 : r_ts;

esac;

init(N) := 5;

next(N) := case

idle & refresh : 5;

idle & request & !refresh &

authzE & (stale | N=0): 5;

authorized & refresh : 5;

refreshed & refresh : 5;

--perform

authorized & !refresh & authzE & (N>0) : N - 1;

1 : N;

esac;

init(request) := 0;

next(request) := case

idle & request_event & !refresh & authzE: 1;

authorized & !refresh & (!authzE | authzE): 0;

1: request;

esac;

init(idle):= 1;

next(idle):= case

idle & refresh : 1;

idle & request & !refresh & !authzE : 1;

idle & request & !refresh & authzSS : 0;

idle & request & !refresh &

authzE & (stale | N=0) : 0;

authorized & !refresh & !authzE : 1;

authorized & !refresh & authzE & (N>0): 1;

refreshed & !authzE : 1;

1: idle;

esac;

init(authorized):= 0;

next(authorized):= case

idle & request & !refresh & authzSS : 1;

refreshed & authzSS : 1;

authorized & refresh : 1;

authorized & !refresh & !authzE : 0;

authorized & !refresh & authzE & N=0: 0;

1 : authorized;

esac;

init(refreshed):= 0;

next(refreshed):= case

idle & request & !refresh &

authzE & (stale | N=0) : 1;

refreshed & !authzE : 0;

refreshed & authzSS : 0;

authorized & !refresh & authzE & N=0 :1;

1 : refreshed;

esac;

init(perform) := 0;

next(perform) := case

authorized & !refresh & authzE : 1;

1 : 0;

esac;

---formula phi1 for WEAK STALE SAFETY

LTLSPEC G ( (refresh & authzE & F request) ->

(X((!refresh | (refresh & authzE) & !request) U

((request & F perform) -> (!perform &

(!refresh | (refresh & authzE)) U perform)))) )

LTLSPEC G ( perform -> add_ts < r_ts )
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[root@localhost TRMobject.smv]# NuSMV

trm_object_safe.smv

*** This is NuSMV 2.4.3 (compiled on Mon May

5 02:33:40 UTC 2008)

*** For more information on NuSMV see

<http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification

G ( (refresh & authzE & F request) ->

(X((!refresh | (refresh & authzE) & !request) U

((request & F perform) -> (!perform &

(!refresh | (refresh & authzE))

U perform)))) ) is true

-- specification

G (perform -> add_ts < r_ts) is true

[root@localhost TRMobject.smv]# NuSMV -int

trm_object_safe.smv

NuSMV > go

NuSMV > print_reachable_states

################################################

system diameter: 19

reachable states: 1.12752e+06 (2^20.1047) out of

2.48218e+07 (2^24.5651)

################################################

NuSMV >

A.2 Stale-unsafe TRM
Code Listing B is an SMV implementation of stale-unsafe

FSMobject shown in figure 10. For brevity, we only show the
lines that differ from Code Listing A. One can construct
this unsafe machine by replacing the corresponding lines in
listing A with the ones specified in listing B. A significant
change is the missing check for stale-safety. All occurrences
of the variable authzSS has been replaced with authzE.
authzE is just the access policy and authzSS is the stale-
safe version of authzE. Also, checks for the variable stale
are removed. The property that is specified here is formula
ϕ0 (Staleness Unaware) which is satisfied by this machine.
In order to see the time-stamps of objects that are acces-
sible using this machine, we obtain a counter-example by
specifying the second property that checks if the objects be-
ing accessed were added after the last refresh time. As you
can see in the trace, in state 1.4, the subject performs an
action on an object whose add ts is 10. But however the
last refresh time-stamp r ts at this point for the subject is
2. This is clearly a stale-unsafe access. Note that we use
the -bmc option (for Bounded Model Checking) to get a
counter-example of minimal length.

Code Listing B

ASSIGN

init(leave_ts) := 0;

next(leave_ts) := case

idle & request & !refresh &

authzE & (N=0) & leave : 1;

esac;

init(remove_ts) := 0;

next(remove_ts) := case

idle & request & !refresh &

authzE & (N=0) & remove: 1;

1 : remove_ts;

esac;

init(r_ts) := join_ts;

next(r_ts) := case

idle & request & !refresh & authzE &

(N=0) & (r_ts <= 90): r_ts + ticks;

esac;

init(N) := 5;

next(N) := case

idle & request & !refresh &

authzE & (N=0): 5;

esac;

init(idle):= 1;

next(idle):= case

idle & request & !refresh & authzE : 0;

idle & request & !refresh &

authzE & (N=0) : 0;

esac;

init(authorized):= 0;

next(authorized):= case

idle & request & !refresh & authzE : 1;

refreshed & authzE : 1;

esac;

init(refreshed):= 0;

next(refreshed):= case

idle & request & !refresh &

authzE & (N=0) : 1;

refreshed & authzE : 0;

esac;

--formula phi0, STALENESS UNAWARE

LTLSPEC G( (refresh & F(request & authzE)) ->

(!request U ((request & authzE & F perform) ->

((!perform & (!refresh |

(refresh & authzE))) U perform))))

LTLSPEC G( perform -> add_ts < r_ts)

[root@localhost TRMobject.smv]# NuSMV

trm_object_unsafe.smv

-- specification

G( (refresh & F(request & authzE)) ->

(!request U ((request & authzE & F perform) ->

((!perform & (!refresh |

(refresh & authzE))) U perform)))) is true

-- specification

G (perform -> add_ts < r_ts) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

.

.

.

[root@localhost TRMobject.smv]# NuSMV -bmc

trm_object_unsafe.smv

-- no counterexample found with bound 0

-- no counterexample found with bound 1

.
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.

.

-- no counterexample found with bound 10

-- no counterexample found with bound 0

-- no counterexample found with bound 1

-- no counterexample found with bound 2

-- specification G (perform -> add_ts < r_ts) is false

-- as demonstrated by the following execution sequence

Trace Description: BMC Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

r_ts = 2

leave_ts = 0

remove_ts = 0

join_ts = 2

N = 5

ticks = 1

request_event = 1

request = 0

refresh = 0

perform = 0

leave = 0

remove = 0

idle = 1

authorized = 0

refreshed = 0

authzE = 1

add_ts = 10

-> Input: 1.2 <-

-> State: 1.2 <-

request_event = 0

request = 1

-> Input: 1.3 <-

-> State: 1.3 <-

idle = 0

authorized = 1

-> Input: 1.4 <-

-> State: 1.4 <-

N = 4

request = 0

perform = 1

idle = 1

[root@localhost TRMobject.smv]# NuSMV -int

trm_object_unsafe.smv

NuSMV > go

NuSMV > print_reachable_states

#################################################

system diameter: 20

reachable states: 1.02864e+06 (2^19.9723) out of

2.48218e+07 (2^24.5651)

#################################################

NuSMV >
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CHAPTER 1 

INTRODUCTION 

Psychology has always played an important role in warfare.  From the intimidation of enemy 

troops to what motivates an international terrorist organization to carry out attacks on 

civilians, understanding the mindset of an opponent can be crucial to a desirable outcome.  In 

the most ideal situations, a sufficient amount of data can be used not only to anticipate 

actions but influence them as well.  Terrorist organizations, however, have often represented 

the counterexample to such logical approaches due to the seemingly irrational nature of their 

choices and motivations.  This understood being able to effectively model such a mindset is 

crucial in countering the potential damage these groups are capable of. The objective of our 

work is to bring a clearer view of the actions and motivations behind malicious activity 

through proven models and enhance them to provide a more effective level of detail and, 

ultimately, security.   

One aspect of modeling that we believe warrants investigation is the application of human-

centric analysis techniques.  In essence, we believe the focus on patterns and data mining 

have effectively ignored the fact that humans are responsible for a great deal of it.  

Understanding the perspective which individuals have and the way the interact with others 

allows us to begin to model security in such a way that prevents undesirable actions by first 

determining how they arrived at their choices originally.  Additionally, understanding that it 
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is human nature to interact with others provides an opportunity to form a better model of 

communication surveillance and security planning.  

The relationships between individuals often form a complex web of associations that can be 

captured through the observation of interaction.  The field of social networks, which study 

such graphs, offers a wealth of information in how to observe, model, and derive information 

from the interactions between people.  Relationships and the communication therein can 

provide important clues when attempting to search for malicious conversations.   

These same relationships can also be a liability in security.  In epidemiology, there are a 

number of vectors by which a contagion can potentially pass.  When the biological agent in 

question is particularly contagious through human transmission, the primary vector by which 

it travels is often via either direct personal contact or proximity between healthy and sick 

individuals.  Understanding the social networks of a victimized population is a vital asset in 

anticipating and dealing with the use of a biological weapon, as the very relationships which 

an individual may cherish could be the means by which they become a casualty. 

While social networks provide a way to study how humans interact, it does not necessarily 

expose their personal motivations.  To address this problem, we must turn to one of the 

sciences of how individuals arrive at their decisions: game theory.  Game theory is the study 

of human motivation under the assumption that people whom make a decision wish to 

maximize their gain from it in a rational manner.  Applying this science to situations 

involving terrorism reveals answers to questions such as the benefit of an attack versus the 

expected response, the aftermath, and how to achieve the best outcome possible amidst 

potentially difficult options.  Understanding what motivates a choice can assist in 

understanding where an attack may take place and build a better defense against it.  Through 
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this information, additional steps can be taken to mitigate the overall effect thereof.  In the 

realm of bioterrorism, such effects may include how many human lives are saved and 

whether or not civic resources are available to properly deal with an attack. 

When we combine these fields with an existing epidemic model, we have the potential to 

generate a comprehensive method of dealing with actual threats. With the right data, such a 

simulation could yield an accurate prediction of the outcome of an attack with a cost-

effective use of resources to form a response.  Such results can be further refined with a list 

of potential targets and it becomes possible to place an upper bound on the damage done by 

an attack, through selection of the best possible combination of responses.  The end result 

would essentially be the best possible defense with regards to both the present and future 

threats to human life.  

1.1 Motivating Scenario 

Our motivating scenario begins with a country which has reason to believe one or more 

terrorists groups have rallied against its’ political ideals and now threatens the lives of the 

citizens within.  The country’s governing body recognizes them as a legitimate threat and 

now wishes to take action to protect itself.  Only a few details are known about the group, but 

one of the most troubling aspects of their capabilities is their investment in weaponized 

biological agents.  The first step that the government wishes to take is to assess the 

legitimacy of the threat.  It is not clear where leadership in the group resides; the organization 

has chosen to operate as a series of cells to minimize the impact of being discovered.  An 

uninformed move made against one cell could inadvertently trigger an even greater 

repercussion and invalidate the investment of resources made as plans are changed.  One of 

the positive points in the situation is that due to their physical distribution, they must rely on 
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public communication networks to avoid detection.  In order to gather intelligence, the first 

step which the government takes is to construct a method of surveillance to monitor the 

networks within their own borders for cell activity, using existing research on text parsing 

and anomaly detection.   

However, their efforts reveal that the group extends well beyond the authority and capability 

of their own security agencies to observe them.  The group is revealed to be a truly 

international movement, and despite the completeness of their surveillance solution it is clear 

that crucial pieces of information are outside of their ability to capture.  Through their 

inquiries, they discover that many other countries share their concern; they too believe they 

are concerned by the threat of terrorism.  It is through their mutual need to defend against 

such a complex enemy that they form an alliance to share intelligence. Each country has 

agreed to share what they have with each other as long as they receive the intelligence of 

their partners in exchange.  However, there is no authority to ensure the alliance is enforced, 

requiring each country to operate within their own means of insuring the information they 

receive is legitimate and useful.   

After time has passed and enough information has been gathered to assess the threat, the 

government discovers that a biological attack is indeed going to be carried out on their native 

soil soon.  The legislative representatives have determined a course of action is necessary.  

However, due to a lack of prior data on actual acts of bioterrorism, the government cannot 

determine the impact of an attack.  Multiple targets across several cities are suspected.  Many 

existing simulations are determined to either be too simple to yield useful data or complex to 

the point that all possible targets cannot be evaluated within the time available with existing 
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resources. A large search space must be explored with available limited computer resources.  

Thus, a new simulation-based model is necessary in order to prepare for the attack. 

Finally, the government has successfully narrowed down a small number of potential targets 

in a single city.  Assuming that the attacker wishes to maximize the damage to the population 

to make their point clear, they must take into consideration several possible ways of 

defending themselves.  The circumstances are made more complex due to the cost of each 

method, the ways in which they can be combined, and using limited resources available.   

Their goal is to create a cost-effective solution to deal with the threat and ensure an upper 

bound on the worst case scenario, and implement it before the attack. 

The goal of this dissertation is to address each of these needs to form a complete security 

solution.  We have devised solutions to every problem mentioned, building on existing 

proven work in the field of security while devising our own novel approaches.  The ultimate 

motivation of this work is to understand the threat of bioterrorism and how to prepare for it. 

1.2 Related Work 

The ambitious nature of our work requires us to address a number of areas.  As such, we have 

performed extensive research on related bodies of work in our desire to create a better 

solution than currently offered by existing work. We offer the highlights of the works 

available that most closely resemble our own. The sections are appropriately divided based 

on the field in which the work was performed. 

1.2.1 Communication Surveillance 

Surveillance on communications has been a popular avenue of research in the past decade.  

Understanding how information can be observed and correlated is crucial to developing an 
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accurate anomaly detection system, which allows us to automate the intelligence gathering 

process.  The work of Ben-Dov et al. demonstrates the ability to enhance link mining of news 

sites by using available tools to semantically comprehend the contents of a document. [1]  

One experiment performed by the group successfully discovered correlations between two 

individuals based simply on their presence within the same sentence.  Successful examples 

can also be found in the field of semantic web analysis. [2] 

1.2.2 Game Theory 

Game theory has long been a staple of analysis within social and political sciences. We use it 

to model the motivations of both benevolent and malevolent parties.  In particular, we wish 

to model the conflict of interest between an attacker and a defender in the realm of terrorism.  

Robert Axelrod in his book “The Evolution of Cooperation” explores the findings of a 

contest he created using a variation of the repeated Prisoner’s Dilemma.  In it, all participants 

were encouraged to submit their own algorithms in an attempt to find the superior approach.  

Surprisingly, the winner of the contest was a retaliatory algorithm known as Tit-for-Tat, 

which essentially cooperated with another player unless there was a change of strategy, in 

which it selected an identical strategy on the next round.  [3] 

Several related areas of work have already considered the possibilities of game theory as 

applied to information sharing.  In particular, a great deal of work has been done on peer-to-

peer networks.  Within these file sharing systems, independent players join and leave at their 

leisure, seeking to download a file or files with the help of other participants.  Problems arise 

when a new participant joins the network and downloads a resource from other peers but 

never actually contribute to the group.  This process, known as leeching, has been a large 

problem in piece-meal file sharing protocols such as the popular BitTorrent. The work of 
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Gupta et. al [4] and Buragohain et al. [5] both deal with this behavior by creating a system of 

incentives for further contribution. 

1.2.3 Trust in Peer-based Networks 

Trust is crucial to the continued operation of several distributed systems to deal with 

malicious activity and counter-productive behavior.  Information exchange methods have 

been particularly useful in the formation of ad-hoc networks.  Seredynski et al. used the 

concept of an evolving genetic algorithm to enhance security and trust in a wireless network 

among multiple nodes relaying data packets. [6]  Competition among the nodes occurred 

between behaviors that were always selfish and evolutionary behaviors that become selfless.  

Cooperation naturally evolved with a success rate directly dependent on the initial presence 

of the malicious nodes, achieving an average success rate of over half despite the lack of 

punishment methods. Other works have taken a purely game-theoretic approach to trust.  The 

work of Cascella performed analysis of an infinitely repeated form of the prisoner’s dilemma 

with regard to persistent players randomly selected. [7] They found the introduction of a 

reputation system allowed punishment systems based on discriminating between good and 

bad reputations succeeded as long as players were sufficiently patient to achieve the results. 

A similar body of research attempts to deal with peer-to-peer trust in scenarios involving 

military cooperation amidst forces deployed in the field. [8] Given a military body as a 

dividable resource, they attempt to address the problem of resource allocation in situations 

where either a central authority isn’t robust enough or the resources span multiple 

international owners.  The core issues they addressed were dealing with malicious reports 

attempting to sabotage trust ratings and attempting to give more control to an agent’s own 

rating.    
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Our own contributions to trust offer a unique approach in which perfect information about a 

situation comes at a cost.  Thus, trust itself comes at a price, and must be weighed against 

other needs such as being efficient.  We use this cost of trust primarily to augment our game 

theory in regards to the exchange of information.   

1.2.4 Epidemiology Simulations 

Understanding how a biological agent can start an epidemic requires a robust understanding 

of contagion modeling. As such, we have done significant research in the area of simulations 

to address the need for observing how a disease could spread throughout a population.   

BioWar is an agent-based model based on a variety of factors that simulate a number of 

infectious diseases at the lowest level possible. [9] People are represented individually in 

such a way that travel, human contact, and even physical location are all considered 

throughout the course of a virtual day. Episims is a product of research efforts at Los Alamos 

National Laboratory [10] designed to model epidemics at a similar level of detail, with a 

greater focus on the demographic a person belongs to, their location, and activities.  Some of 

this information is taken directly from a small public survey aimed at gathering information 

about an individual’s daily routine, while the transportation data is derived from TransSims. 

Users of the model include Eubank et al., whose work suggests that epidemics can be 

contained with simple vaccination policies targeted at major convergent components of the 

network. [11] Complexity however is not without cost.  Each level of detail adds both a need 

for more storage and computations resources on a system.  Episims, for example, requires 

high performance computing resources to run a simulation within a reasonable amount of 

time. [12] More importantly, if a model is designed to address a certain level of realism, the 

appropriate data must be available to take advantage of it.  A model which considers a large 
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population’s daily hygiene would be difficult to justify without an appropriate cross section 

of surveyed data of the region in question. 

We use the SIR model to build an epidemiology simulation as described in chapters 5 

through 7.  In the original model, the chance of infection and recovery are constants that 

apply uniformly to every individual. [13] The population total remains constant and can be 

calculated by adding up the number of members of each state.  While powerful, it does not 

directly provide room for more detailed interactions beyond collapsing multi-dimensional 

data into simple probabilities.  We also believe it cannot accurately portray many of the 

impacts of real life social networks in how a contagion spreads.  Research suggests that the 

heterogeneity of social networks can yield an intricate propagation of a contagion that cannot 

be modeled by homogenous state-based models alone. [14] [15] [16]  

Several branches of research have attempted to refine the SIR model to enhance its’ accuracy 

and address the increasing need for practicality.  Moshe Kress of the Naval Operations 

Research Department [15] abstracted the equations and applied it to the spread of smallpox 

thru an urban population of 6 million.  A host of states were introduced to reflect infectious 

conditions associated with the lifecycle of the disease.  The social network was constructed 

across a population of several million, though the household size was fixed and the members 

of which could visit any gathering area with equal probability.  The author asserts this is a 

basic generalization founded upon the small world property of most real-life networks.  

Satuma et al. considers the more complex functionality attached to state transitions in both 

continuous and discrete forms of the model while retaining all of the SIR model’s most 

desirable qualities. [13] The work of Stattenspiel et al. applies the original model to deal with 

mobility among geographical regions to describe a measles epidemic in Dominica. [17] The 
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work of Myers et al. [18] added social networking in such a way that allows for both varying 

strengths of associations as well as heterogeneous bidirectional linking.  Myers points out 

that several kinds of contact due to various roles may result in a different infection for one 

participant than the other.  They also use the concept of percolation within a network coupled 

with an implementation of the SIR model that groups individuals in the same household as 

one node. Another extension is that of [19], which introduced a discrete-time model to allow 

for stepwise simulations. The authors show that much of the model can be extended while 

retaining many of the SIR’s most desirable qualities. These, along with several others, 

reinforce the notion that the model provides a solid foundation for epidemiology. [20] [21] 

[22] 

The work of [61] takes a look at the general need for models within epidemiology and turns 

to an agent based software model to provide.  Although they do not actually create a specific 

model for use, they instead take advantage of the existing agent-based behavior system called 

StarLogo to model the outbreak of tuberculosis within a homeless shelter.  The level of detail 

in which they simulate the situation is notable, as the physical location in question is literally 

represented within the system in terms of where furniture is within rooms, how it is used, and 

the movement of people over time.  The work of [62] analyzes existing vaccination strategies 

based on game theory and use a projected dynamic system in an effort to locate Nash 

equilibrium.  They set aside the SIR model in favor of constructing a function which provides 

a probability of infection based on the current status of the population and the number of 

vaccinations that have currently been administered.  Their entire simulation strategy is rooted 

in effective theoretical foundations rather than discrete simulation.  The work of Banks et al. 

directly applies game theory to a simulated epidemic of smallpox within the United States 
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due to bioterrorism. [63] The uncertainty regarding perceived values by an opponent are 

considered and mitigated via Monte Carlo methods.  This particular work is perhaps the 

closest one to our own, though our approach via Stackelberg games and the customized 

epidemic modeling provide an important distinction.  
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CHAPTER 2 

MESSAGE CORRELATION IN AUTOMATED COMMUNICATION 

SURVEILLANCE THROUGH SINGULAR VALUE DECOMPOSITION AND 

WORD FREQUENCY ASSOCIATION 

2.3 Security in Multiplicity 

The first step the country must take is to monitor the public communication networks.  We 

assume that these networks result in a large amount of data to be sifted through on a regular 

basis that would be impractical to do so entirely by hand. However, there are certain aspects 

of understanding information that data mining alone is currently incapable of.  In order to 

determine when the terrorist cells are exchanging vital information, they must automate their 

surveillance in such a way that permits them to offload the majority of the work to an 

automated system that only involves human intervention when necessary.   

One of the biggest challenges in automated message surveillance is the recognition of 

suspicious content. A classic approach to this problem is constructing a set of keywords (i.e. 

‘anthrax’, ‘contagion’, ‘smallpox’, ‘spores’) considered malicious. In the event that a 

communiqué contains one or more of these words, the message is flagged appropriately for 

further review. 

However, there are two drawbacks to this particular approach. First, it is reasonable to 

assume that such relatively static keywords will not always be present in messages that 

would otherwise warrant suspicion. Second, there is little guarantee that a sufficiently 
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intelligent individual will not recognize such surveillance is in place and, instead, use 

substitute words in place of known keywords. 

David Skillicorn of Queens University has suggested a different approach in his work on the 

Enron e-mail dataset. [23] In his research, he outlines a method for using singular value 

decomposition, abbreviated SVD, in the interest of recognizing trends in such topics as e-

mail and social networks. Within his work, he constructed a matrix composed of word 

frequencies associated with each message, ranked via a composite of the number of times the 

words appear and the number of times they are ‘expected’ in casual conversation. We believe 

that this work can be utilized in our system by extrapolating some of the techniques he used 

and applying them to a real-time message monitoring system. 

We propose a system that builds on the word frequency techniques outlined in Skillicorn's 

work.  By using the Enron e-mail dataset and altering the role of his use of the SVD, we 

believe we can achieve a higher degree of message correlation accuracy based on the 

intersection of uncommon words within conversations.   

2.4 Identifying Malicious Information via Association 

The goal of the security-conscious country is to essentially automate the recognition of 

anomalous or suspicious messages within typical communication traffic. [24] Our areas of 

interest include social network analysis, text processing, and result filtering. This chapter will 

determine the effectiveness of singular value decomposition applied as a text filtering and 

correlation system in our system. 

One particular approach we consider is the recognition of social context. Given a message 

that was deemed suspicious by a detection technique, we assume there is an increased 

probability that future messages bearing similar characteristics to the detected message 
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warrant further suspicion. For example, a member of a cell mentions the transport of a 

biological agent to another cell, the members of which discuss the best way to receive the 

shipment.  We track the conversations through the generation and passing of tokens carrying 

the characteristics of the topics in a model derived from observed social interaction within 

the message passing network. Currently, these tokens are triggered by the presence of two or 

more keywords from a list tailored to our dataset. 

The Enron e-mail dataset was originally made available by the Federal Energy Regulatory 

Commission during its investigation of the company. It was purchased by MIT for use in data 

analysis, and is currently available as both a raw set and a compiled database from Carnegie 

Melon University, courtesy of William Cohen. This dataset is useful to e-mail surveillance 

research as it is a freely available collection of messages that has been generated within a 

'real world' scenario. After pruning and restructuring for consistency, the overall corpus is 

composed of approximately 250,000 e-mails generated over a five-year period. 

Each e-mail remains in its' original raw ASCII-encoded text format, conforming to the RFC 

2822 standard. The simplicity of this specification and the data it requires for proper mail 

transport assists with analysis in a number of ways. First, every e-mail must contain a unique 

identification number assigned by the originating server, providing us with a rudimentary 

way to track threads. Second, each message must have a well defined origin and destination 

address, with the exception of any group aliases. Third, every message has a time and date 

stamp that reflects when it was originally sent, providing an explicit ordering to the 

messages. 

Finally, the body text of each e-mail has already been cleaned of any escape sequences or 

special characters. This greatly simplifies any preprocessing necessary for text parsing. The 
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content of the Enron dataset is its' most useful aspect. We understand that, at some point in 

time, e-mail began circulating that eventually led to the investigation of the entire 

corporation. This has been documented by countless news reports, committees, and even 

other research groups. Coupled with the official announcement on January 9th, 2002 that the 

United States Department of Justice was beginning its official inquiry, we have definitive 

moments and individuals that can be scrutinized to determine the overall effectiveness of our 

experiment. 

 

 

Figure 2.1.  An excerpt from the Enron e-mail dataset. 
 

Singular value decomposition offers a pattern-centric approach to text-based analysis. Given 

a m by n matrix A of real or complex numbers, we can decompose it into a series of 

component matrices: U, S, and V. U represents the patterns among values contained among 

the objects. In this experiment, the objects are the messages. V embodies the patterns among 

the attributes of each object. This will usually emerge through the ranks of words within the 
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messages. The S matrix is a diagonal matrix confirming to the dimensions n by n that stores 

the singular values of A. Essentially, the most 'interesting' parts of the original matrix are 

made evident through the breakdown process and isolated for our use. [25] 

 

 

Figure 2.2.  Correlation of a single message across the decomposition 
 

Once the SVD process has been carried out, the resulting matrices can be used for a variety 

of purposes. One particular way to use the results is the elimination of deviants from the 

patterns to filter out noise. We define noise among our messages as misspelled words, 

accidentally insertion of punctuation, and anything else a user may inadvertently insert 

within their message that cannot be removed automatically via preprocessing in a timely and 

effective manner. Other uses include object correlation, signal processing, and even text 

retrieval [26]. Most of the uses for SVD stem from the fact that the components, once 

modified, can be used to build a new matrix that contains only the most 'interesting' qualities 

of the original. 
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2.5 Applying the SVD 

Our original system [24] has been outfitted with a new detection module based on the SVD 

method. The algorithm within the module requires a ranked word database, one or more 

messages that share the same token, and a set of messages that have originated from them 

representing recent traffic. A matrix is constructed based on the word content of the 

messages, which is decomposed according to the SVD method. A threshold is set for the 

noise, and the results are analyzed for any correlation. If a message in the recent traffic set 

has a strong correlation with one or more of the token holding messages, the token is passed 

to all recipients of the message. 

We have made a number of assumptions based on the characteristics of our dataset. First, we 

assume that the content among messages is not obscured through covert communication 

techniques, such as encryption or word replacement. Second, we assume that on any given 

topic there are a number of words that are rarely used outside of the text. This includes 

subjects, terminology, and any form of slang. Finally, we assume that subsequent 

conversations based on an original message will not always carry the same unique nouns that 

would otherwise make detection simple. For example, a weapons dealer selling weaponized 

smallpox will likely be flagged on the initial offer to one of the cells, but the subsequent 

messages regarding price negotiation and leaving out the product name may appear as 

innocuous as traffic from a public auctioning site.  This is a crucial weakness in traditional 

techniques, as conversations cannot always be tracked via a unique message ID.  

Additionally, information can potentially be passed from one person to the next in a 

completely separate e-mail thread.  By tracking this information and using prior context, we 

can potentially bridge the gap between messages.  
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To determine the rank of a particular word, a brief word history is kept. The 5,000 most 

common words within the Brown Corpus of Standard American English are used to seed the 

database. As words are extracted from messages, each word and the number of times it 

occurred within the message is either inserted into the database if the word is new or used to 

update the existing word rank. 

The matrix constructed is created based on the number of messages involved and the words 

present. Each message represents a column, while each row represents a word. Thus, each 

cell represents the number of times a particular word occurs within a particular message. The 

columns are ordered from most common (left) to least common (right). Mathematically, this 

is represented by (2.1).  

 

 (2.1) 

 

W represents the set of all words that occur in the union of the word sets for each message M. 

The function count returns the number of times a particular word wi occurs within a message 

mj. Note that Mj is derived from the words in mj; however, mj may contain the same word 

more than once while Mj is a list that strictly represents all words only once. 

Once the SVD technique has been used on the messages, the noise is removed through the 

use of a threshold of 0.25, derived from observation within experimentation.  After the 

singular value dimensions falling below this threshold are removed, the matrix is re-

constructed from the components. The resulting matrix should assist in simplifying the 

amount of data that must be analyzed. The correlation of any two messages is based on a 

total score. Each word that is found in both messages is given a rating according to (2.2).  
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The variable wi represents the word that occurs in messages mj and mk. The count function 

returns the number of occurrences of the word within a supplied message. The rank function 

is a cumulative count of the occurrence of the word wi in all messages up to this point. This 

equation is designed to place emphasis on words that occur less frequently others. It is 

assumed that rare words that occur in both messages are more likely to be good candidates 

for a topical match. Note that si is naturally normalized to one. Given that the rank of a word 

is adjusted before these messages are processed with this equation, the maximum score will 

be one. In order to determine if two messages match, we use (2.3). 

 

(2.2) 

 

(2.3) 

 

where Wj and Wk are the set of all words contained within mi and mk, respectively, and a 

represents a predetermined threshold that determines the minimum. In theory, this should be 

some value that is determined by statistical analysis of known correlating messages. For our 

experiment, we assume a is 4.00. 

2.6 Real Time Communications 

With this hypothetical security system, the country in question must now find a means of 

applying it to actual networks.  Monitoring a continuous stream of data in the interest of 

security is not a trivial problem.  In order to properly classify a single message as normal or 

suspicious, one must parse the contents, determine the origin, identify the recipients, and 

determine how prior communication traffic affects the context.  Whether or not a message is 
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suspect, it can theoretically affect the semantic meaning of future communications.  This 

implies that, as time progresses, infinite storage for prior messages is necessary for a 

‘perfect’ detection system that can correlate events from any past instance.  

While tools exist for message classification with a variety of intent, there are no known 

systems uncovered through our own research which establish a localized context for each 

node in the interest of security.  While individuals being monitored may share a similar 

context in a common environment, there are several scenarios in which the same message 

passed by two different users does not have the same meaning.  For example, if the 

hypothetical malicious individuals speak of symptoms such as fever, chill, and nausea would 

most likely be relating to a prior e-mail about the effects of smallpox, as opposed to a patient 

asking their doctor in regards to a bout with the flu. Hence, there is a need for a system to 

‘personalize’ context data for each participant to properly ascertain security threats.  

2.6.1 The Challenge of Data Streams 

Since its inception, e-mail has become an increasingly popular form of communication.  

According to a study performed by research group IDC in 2002, e-mail traffic will increase 

from 31 billion messages a day to 60 billion by 2006. [29] As of the second quarter of 2005, 

there are roughly 900 million known users of the internet. [30] Assuming that mail traffic 

increases linearly, each user receives an average of 60 e-mails a day.  Manually sifting 

through the traffic of a group of a hundred people would require an individual to read 6,000 

e-mails a day and have a perfect understanding and recollection of all prior data.  Clearly, 

automated methods are necessary to deal with such volumes. 

E-mail anomaly detection is not a new concept.  One existing topic of interest is the 

identification and filtering of spam.  Using a set of desirable message attributes, a spam 
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removal system is responsible for removing all unwanted e-mail from a user’s inbox.  This 

frequently includes advertisements, fraudulent topics, general bulk mail, and any other 

messages that do not appear ‘relevant’.  Ultimately, this will ideally result in a set of 

messages consisting only of what the user desires. [31] While not always providing enhanced 

security directly, spam filtering represents a well-defined area to study. 

The deployment of a real-time version of our system has a number of advantages over a 

traditional approach to security involving fully manual threat assessment.  However, these 

hypothetical strengths must also be considered in terms of the requirements, what the system 

can detect, and what it cannot detect.  As with any approach, all of these constraints must be 

weighed carefully in an assessment of what is appropriate for a given set of security needs. 

2.6.2 Strengths 

In theory, the deployment of this system offers a great deal of benefits.  First, all analysis is 

performed in real-time.  This means that, once deployed, the system is actively monitoring 

the available text stream for any and all communication activity.  In the event that a 

malicious situation is identified, an observer of the system can either respond immediately or 

await further messages to decide whether a security issue exists.  This is particularly 

important when time is a factor in the gathering of information. 

Second, the system indirectly models the complex social interactions of individuals.  Hence, 

as messages are passed, it is possible to identify groups of people with malicious intent and 

how they collaborate.  The recognition of social sub-networks can uncover the underlying 

structure of a subversive organization attempting to collaborate, such as helping to unravel 

the network within terrorist cells and form a more cohesive picture of the threat.   
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For example, consider the deployment of this system in the interest of catching a group of 

criminals involved in smuggling biological agents across international borders.  Assume that 

they are using a message passing network to remain in constant contact along with a 

multitude of innocent people.  Using keywords involving the materials and suspected 

methods, simple text filtering could create a number of false positives from people simply 

discussing other crimes mentioned in the news.  By overlaying detected keyword uses with 

social network graphs, we could detect a group of individuals using these words exclusively 

among themselves.  Once the group is properly identified, the entire set of individuals 

connected could be captured and questioned.   

Extending upon this scenario, should any of these individuals be held responsible, the system 

has already generated a set of conversations shared among the guilty parties.  These 

exchanges could easily translate into an evidence exhibit to be used during prosecution.  In 

turn, the data gathered could be used to further track down other terrorist groups.   

2.6.1 Weaknesses 

Unfortunately, as promising as such as a system may be, it is of note that the proper 

operation of the tool has a number of important considerations.  First, the system requires 

that it has a roughly omnipotent view of communication among individuals.  For example, it 

assumes that users of an e-mail server will not use any other e-mail server to communicate, 

nor any other form of communication that falls outside the bounds of what can be observed.  

Given that groups of individuals will likely communicate in person at some point, one or 

more semantic gaps could be created.  Such gaps would prohibit token passing among nodes, 

as well as create inaccuracies within the perceived social network, reducing the overall 

effectiveness of the system.  
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Second, there are serious ethical implementations for a system with such far reaching 

observational capability.  Regardless of whether or not individuals are engaging in suspicious 

activity, social models are being created for future reference.  Essentially, the data generated 

can be used to identify how close two individuals are, what they have been talking about, the 

common points of contact among them, etc.  If an individual uses the monitored text stream 

exclusively for communication, a fairly accurate model of their relationships can be 

generated.   

To fully understand how such data can be used against an individual, consider a government 

worker in a management position with access to the detection system that has been observing 

an individual applying for a position.  During the evaluation process, the manager could 

analyze the social net around the applicant and determine the people they are closest to.  

These individuals could then be contacted and asked a series of questions about the applicant, 

their habits, prior employment history, etc. While the manager would benefit greatly from 

being able to have such data, the potential employee would undoubtedly feel their private life 

had been violated.  

Another weakness of the system is the lack of training methods inherent within it to teach it 

when certain messages are false positives and false negatives.  Although it is assumed that 

the observing agent can distinguish between results, it is much more convenient to filter out 

the ‘noise’ to focus more on issues that require more attention.  Additionally, given the token 

use of the system, a serious amount of false contexts could be created that would cause 

multiple complications for the entire social network.  In theory, the impact of false tokens 

could be eliminated by giving an observer the option to delete specific tokens within the 

constructed graph, but this is only a temporary solution. 
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Regardless of how effective the system is, the ultimate weakness that this system faces is 

how much data must be stored.  Traditionally, in most message passing networks, messages 

are stored at the user’s terminal, removing the burden from the server.  However, in order for 

the system to properly determine previous context, all messages passed must be stored in an 

archive after processing for at least some duration of time.  Coupled with the data storage of 

links among users and the presence of tokens, it is possible that the data requirements of the 

system could multiply exponentially as more users join a network and average traffic flow 

increases.   

2.7 Experimental Results 

Despite our efforts and foundations, our experiments did not yield the desired results.  After 

sifting through 900 messages, we found that our system had roughly 3% true positive results, 

59% true negative results, 12% false positives, and 26% false negatives.  This was an 

estimation based on spot-checking individual messages as a subsample of the whole.  

Clearly, much work is needed to make this model successful and accurate. 

The first problem we found is that we lacked a proper metric by which to rate results.  There 

was no perceivable method by which a human could offer guidance for more than a small 

subset of the real data.  The number of permutations between all possible messages made it 

virtually impossible to generate a sensible set of test data to work with in a reasonable 

amount of time.  Our only real alternatives were to either take the time to construct a data set 

by hand or generate it.  The former option could not be constructed large enough without 

exponentially increasing the amount of data we would have to keep track of, such as subjects 

and topics which are related but meant to be correlated with only a weak score.  The latter 
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option opens up a whole new set of problems in terms of proper grammar generation and 

determining how to relate subjects in a realistic manner. 

The next problem we found in our model was that larger messages, which have a huge 

corpus of words to be considered, would often relate to other large messages simply by the 

sheer size of less interesting words.  This created a balancing problem that we were unable to 

compensate for.  One option was to normalize by the number of words in the message, but 

that created a problem for more interesting words that only occurred once.  In essence, 

isolating the more interesting words presented a larger challenge than we expected. 

For example, when comparing message numbers 124 and 125 in the series, the overall score 

was 46.5.  There was no discernable correlation between their subject matter.  Several words 

did appear to have meaning in their lack of frequency to join the messages, but sheer number 

of less common words substantially inflated the correlation score.  As a result, we must 

classify this as a false positive. 

At the same time, smaller messages faced the opposite problem.  Messages 268 and 123 were 

very close in that their diction was unique in how it overlapped, but it only scored 0.67 in our 

algorithm.  Although the relation of the topics is difficult to judge as a false negative, the 

similarities should have scored higher.  In essence, we need some form of weighting the 

scores based on size.   

The token passing did not work as expected. Conversations were not properly tracked in all 

but a handful of instances.  Clearly, we are on the right thought process in terms of the nature 

of the problem as reflected in reality, but the implementation needs additional work.  Tokens 

need to degrade after a period of time when the context has faded, but not to the point that 
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they are irrelevant.  Additionally, improving our detection techniques may help this aspect of 

our work directly.  Otherwise, it is difficult to judge the effectiveness of social contexts. 

Another challenge we faced was the resources necessary to process each message.  There 

was a strain on resources to match the pace a real server would encounter.  The SVD 

approach was particularly difficult on the system, as filling a large matrix was difficult to 

optimize.  In retrospect, we may look into ways in which we can have a running cursor 

inserting each message into the matrix and extracting results from the combined matrix, but 

the other challenge was the number of operations involved to simply break it down and 

reassemble it, which can only be optimized through a keener understanding of the 

mathematics involved.   

 

 

Figure 2.3.  A strong false positive example 
 

 

The number of false positives generated by the algorithm makes our approach particularly 

difficult to justify use at this point.  For example, in figure 2.3, we found two messages 

analyzed by the system that were reported to have a strong correlation score.  Although both 
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messages should have a heavy amount of similar material, we instead discovered that they 

spoke of two very different subjects with little in the ways of related content.  This is 

troubling for any security scenario, as even a small amount of false positives could 

potentially scrutinize a number of otherwise innocent individuals. Clearly, this would defeat 

the purpose of an automated system beyond simply reducing the task size unless our true 

negative count was much higher.   

One minor troubling issue was the fluctuation of word frequencies at the beginning of our 

simulation.  Until we got past several hundred messages, individual frequencies ranged from 

0 to 10 in the global frequency dictionary.  Clearly, our system needs to be trained on the 

linguistics on the target communications group, or simply allowed to calibrate for a few days 

of traffic.  Once enough messages were passed, they settled.  

Due to the nature of the problems, we were not able to ascertain whether or not the SVD 

filtering was successful.  We theorize that it was limited by the word frequency problems 

throughout the experiments, and as such may still be a useful addition. However, the cost of 

implementation to the resources of the system bring into question whether or not it could be 

used in a real-time scenario. 

2.8 Conclusions 

Unfortunately, our system was not a success.  While we have learned from this experience in 

terms of what does not work, we recognize that the problem is inherently difficult.  First, the 

nature of linguistic analysis cannot be boiled down to word choice alone.  The grammar of a 

message appears to be much more important than the content alone, and the traditional bag of 

words approach does not appear to help with correlation analysis at all. 
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In order to create a more viable system that can operate successfully on a variety of datasets, 

one possible direction to explore would be a more thorough word frequency dictionary.  By 

using an available compiled English text corpus, a set of words extracted from an e-mail can 

be given global word rankings in terms of frequency of use.  This would create an adaptive 

word detection filter that can comprehend when a traditionally unusual word becomes 

commonplace through widespread use, eliminating potential false positives.  This would also 

address the fluctuation problems we encountered during the experiments. 

One problem with this direct approach is that there are a number of words that share the same 

meaning.  For example, the word ‘person’ has approximately fifteen to twenty meanings, 

depending on context.  While a semantic engine is outside the scope of this system, it is 

theoretically trivial to use a simple thesaurus database and collapse multiple synonyms into a 

single common word.  Such an addition would make word frequency data much more robust 

and accurate.  This would overcome some of the issues with interpretation of word 

processing but it is still insufficient to address the grammar issue. 

Since such a thesaurus dictionary may not be readily available, an alternative would be the 

integration of the classic Porter Stemming Algorithm.  Developed originally in 1980, the 

algorithm was developed by Martin Porter in the interest of automatically removing the 

suffixes attached to words.  One scenario involves the conjugation of a simple verb ‘run’ into 

the various tenses: ‘runs’, ‘running’, ‘ran’, etc. While the past tense word ‘ran’ is not 

properly identified, the rests of the variations are collapsed back into the word ‘run’ itself.  

This algorithm alone could eliminate several redundancies in word frequency detection.  

Even a perfect keyword recognition algorithm is not sufficient when individuals begin to 

encode the text of their message.  The use of encryption breaking techniques is beyond the 
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scope of this research.  However, assuming that data encryption is never used, there is 

another alternative to hiding the true topic of a message: word swapping.  Keyword analysis 

is virtually useless when an individual uses unrelated words in place of suspicious words.  

For example, using the word ‘corn’ in place of ‘bomb’ would create a new message that 

would appear to be innocuously concerned with food.   

Given the widespread interest in spam filtering, there are undoubtedly a number of 

alternative anomaly detection techniques that can be used on text-based communication.  

Further research is necessary to determine what techniques are available, their effectiveness 

in detecting characteristics, and whether or not they would be a beneficial addition to the 

system.  For example, the use of artificial intelligence to automatically identify keywords has 

been discussed in the work of [32]. 

One area of necessary research can be found in properly modeling temporal decay within the 

social network.  Several questions must be answered:  How do implied relationships decay 

overt time?  When does a token become invalid?  How does time affect the weights of both 

nodes and links?   What adjustments should be made to the lifespan of a token when used 

repeatedly?  Clearly, much of this research may branch outside of traditional computer 

science areas.    

Another interesting avenue of research is the explicit identification of roles within a network.  

Within any given social setting, each individual often serves one or more roles in the 

communication infrastructure.  Some may be hubs of information, always kept informed of 

situations and responsible for informing others.  Others may act as brokers between two 

major parties, a liaison responsible for maintaining a channel of contact. [33] These roles 

impact how individuals interact, their purpose, and ultimately the way information 
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disseminates through the network. Such identification could distinguish between low level 

members of terrorist groups and the leaders themselves. Further research into identification 

of these roles can enhance anomaly detection by understanding when an individual deviates 

from the normal purpose they serve.   

Groups of individuals, also known as social fields, often form automatically within social 

environments. [34] Whether by a direct department assignment or simply acquaintance, each 

individual has a number of associates that he or she frequently communicates with.  When a 

number of individuals share close mutual ties, a group often exists.  Recognition of these 

groups represents a unique challenge in future research.  Social groups represent a significant 

factor in knowledge distribution, and existing techniques for network analysis may prove 

useful. 

A promising older method of analysis is the field of graph clustering. [35] By discovering 

correlation of nodes through analysis of shared links among tightly grouped users, groups can 

be discovered.  The work of [36], although focusing on the field of internet topology, gives a 

number of insights on creating such clusters through discovery of how two nodes are 

indirectly connected.   

Regardless of the results, the problem remains interesting in the sense that a comprehension 

of the social situation may prove to be just as vital as the grammatical comprehension of the 

information.  The sheer amount of data involved in today’s communication networks cannot 

be easily dealt with, and the need for automated surveillance will grow as the traffic 

continuous to increase.  In short, as long as technology continues to advance, there will be a 

need for research in anomaly detection. 
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CHAPTER 3 

THE EFFECTS OF GLOBAL EIGENTRUST ON LOCAL COMMUNICATION 

PUNISHMENT STRATEGIES  

3.9 Separate Agendas, Common Goals: Forming Alliances for Security 

Assume that we have a perfect communications surveillance system that can effectively 

monitor traffic for any sign of malicious behavior.  All traffic within the bounds of the 

authority in charge of it is being sifted through in real-time for possible threats against 

national security.  Within this ideal scenario, however, there is a serious limitation on the 

scope of what can be observed.  If an attacker chooses to relay information outside of such a 

network, or relays information of which crosses into the system boundaries but keeps key 

parts of the context outside of it, the system can still fail to observe the threat. Limitations in 

the availability of resources to extend the system’s scope are further complicated when 

international boundaries are called into question. 

In an era of unprecedented communication infrastructure expansion, the exchange of 

knowledge has evolved into a market for information.  The speed and ease at which data can 

be shared has prompted many governments, businesses, and other organizations to realize the 

value of what they know and to guard it appropriately.  However, the nature of information 

also raises the potential that the analysis of two or more pieces of data can yield a far greater 

value than the combined individual value of each.  Thus, there is an additional and often 

conflicting motivation to collaborate, where multiple organizations to pool their data in the 

hopes that they will be able to mutually increase the value of what they already have.  It is in 
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this struggle of desires that the challenges of sharing protected knowledge arise.  When 

security itself becomes dependent on advanced knowledge and information, a third 

motivation complicates the challenge significantly.   

Defending against the threats of international terrorism presents this scenario in an alarming 

manner.  Countries that are concerned about an attack on native soil must frequently consider 

assailants that have collaborators which span the globe.  A single country rarely has the 

necessary resources and jurisdiction to continuously investigate every possible suspect.   

Even if the resources are available, unless attacks are expected to have a considerable impact, 

it is not likely that the investment is cost-effective.  Thus, a variety of agreements have been 

created in the course of history to attempt to unite multiple governing bodies under a 

common threat by exchanging information with their allies. 

Unfortunately, in the scope of international politics, the only governing factor that insures 

members of an alliance will always cooperate fully lies in their individual motivations.  

Unless data can be verified, there are no guarantees that the information supplied will be 

truthful.  When an exchange of data is made, there exists the potential for increasing gain 

from a transaction by presenting false knowledge.  If the other party’s knowledge is truthful, 

and the malicious party is not caught, a one-sided gain has occurred.  Thus, one of the biggest 

challenges in such endeavors is how to discourage malicious behavior.  

The study of game theory deals directly with the motivations of participants, known as 

players, attempting to achieve some known goal and the choices they must make to do so.  

Out of all options available, game theory assumes that each participant wishes to maximize 

their own personal benefit in a rational manner.  At any given time in an information 

exchange, both participants have the option of telling the truth or providing false data.  While 
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it may seem obvious that all parties would collectively benefit from the truth, each individual 

is often only concerned with their own gain. [37] If that gain comes at the expense of another 

participant with no threat of retribution, there is little encouragement to do otherwise.  

However, when games are repeated, new constraints begin to emerge on a player's strategies.  

If a participant chooses to lie, they run the risk of being caught, leading to a potential net 

loss. When a central authority can observe actions and affect the payout a player receives, 

enforcement of the agreement often becomes a simple manner of finding an appropriate 

punishment.  When considering agreements between multiple sovereign governing entities, 

there is not necessarily any central authority whatsoever.  The burden of ensuring an ideal 

situation is created is shifted to the collective actions of the group. 

One option a player has within such a scenario is to simply refuse to participate with another 

player. This can include all members, or just a selection of those that are not giving the 

desirable responses.   If one player has information that is highly desirable to the rest, with 

little dependence on others, they can potentially influence the choices by the entire group.  

On a level playing field, where no player has information that is significantly more valuable, 

a single player which no longer communicates with the rest can be sacrificed with little 

trouble.  Clearly, collective action must be taken by a significant number of participants to 

have any effect on group.  Thus, several players must be willing to isolate the same player 

with undesirable behavior in the hopes that the malicious participant will change their ways.   

Another more indirect method of enforcing behavior is to base punishment indirectly on the 

level of trust shared by the players.  Normally, each player already has opinions of the rest, 

but they lack a broader view of the situation and must assume that how a player deals with 

them is how they deal with everyone else.  EigenTrust provides a means of collectively 
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allowing each individual player to form accurate opinions of the group by providing ratings 

of their own experiences.   

Several of these factors have already been explored in other works too numerous to mention.  

However, a factor that has not always been considered is the cost of determining whether or 

not information is the truth.  While there is certainly data that can easily be verified, that 

nature of certain kinds of information requires a much more in-depth review.  Thus, the cost 

of verification should always be considered in situations where the net gain of the 

interactions is paramount to the success or failure of an exchange.  

The goal of this chapter is to explore the potential of punishment via isolation with regards to 

trust-based verification.  We wish to determine whether or not such methods are viable in 

large games with multiple players, and consider various scenarios that such logic may face.  

Success of such a method would prove useful in a variety of decentralized strategy 

considerations such as peer-to-peer networks and international politics.   

3.10 The Challenge of Data Sharing 

The scenario for our information exchange strategies is based on a loose alliance with no 

central authority to enforce behavior.  Consider multiple countries in our original scenario 

which have learned of an impending terrorist attack and face the same challenges.  They do 

not have conclusive data to suggest when or where the attack will occur, but each country has 

reason to believe it may occur on their own soil.  Their objective is to attempt to thwart the 

current threat.  However, given an indefinite time span in which the attack could occur and 

limited resources, they have each determined they must work together.  After discovering 

each of them had a common goal, they have formed an alliance in which they exchange 
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information they have collected both at home and abroad.  The nature of the game is one 

which occurs repeatedly for an indefinite amount of time.   

Information is exchanged between members of the alliance individually at a regular interval.  

Each transaction occurs between two countries in such a way that the data is swapped 

simultaneously; both countries must decide on their strategy before the transaction is 

complete.  This trading occurs between all possible pairs of countries simultaneously, 

assuming each pair agrees to do work with each other. The value of the information 

fluctuates within predictable boundaries, and no player has a considerable advantage over the 

rest.  

Each player faces that challenge that they do not know of the kind of behavior the other 

members will engage in.  While all countries involved are assumed to have a common goal, 

they may also see an opportunity to advance their own agenda.  For example, one country 

may wish to keep what they know a secret from the rest, in the hopes of learning more at no 

real cost.   

The strategies chosen by each country is determined by the overall behavior they have 

chosen.  Each country wishes to find the optimal behavior to reduce the impact of defense on 

their national budget.  We assume thus that countries are willing to adapt by altering the 

behavior to reflect the one they believe has performed the best.  At the same time, as 

behaviors shift, the payouts of strategy choices may shift as well, leading to a dynamic 

balance of power.  For example, a behavior to always lie may perform well when other 

countries are not verifying, but as others learn of the benefits of the behavior, others may 

follow suit.  This would result in several liars always lying to each other and never gaining 

any information.   
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Determining whether or not the data is received is legitimate is the responsibility of the 

country itself.  Since the data is primarily intelligence, verifying it has a substantial cost due 

to the resources, manpower, and time required.  In our scenario, verification is always less 

than the value of the information itself, which means consistently doing so will still result in 

a net gain.  However, note that our models remain valid even when verification is much 

higher than the information itself.  

The strategies chosen by each country is determined by the overall behavior they have 

chosen.  Each country wishes to find the optimal strategy to reduce the impact of defense on 

their national budget.  We assume thus that countries are willing to adapt by altering the 

behavior to reflect the one they believe has performed the best.  At the same time, as 

behaviors shift, the payouts of strategy choices may shift as well, leading to a dynamic 

balance of power.  For example, a behavior to always lie may perform well when other 

countries are not verifying, but as others learn of the benefits of the behavior, others may 

follow suit.  This would result in several liars always lying to each other and never gaining 

any information.   

The use of adaption to improved behaviors within a game raises an interesting point about 

the duration of punishment.  One option is to punish a deviating agent indefinitely.  When 

this is done, any future benefit from that agent is simply not possible, potentially allowing 

more forgiving agents to flourish.  Instead, punishment in our game is done in such a way 

that the other player simply loses a significant amount of their own potential earnings, 

reducing their net gain from the game.  This indirectly makes the ideal behaviors much more 

likely to be chosen.  Eventually, if this is practiced widely enough, overall behavioral choices 

yield an ideal environment where everyone can benefit.  Likewise, when we have a fixed 
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interval when agents may take the opportunity to change behaviors, we would potentially 

discourage what may otherwise be an excellent source of profit; thus, forgiveness must be 

performed by all agents during this round.  An example of this would be when a government 

agency has a new leader or a business comes to the end of a fiscal quarter. 

Determining reputations within a distributed network can be a difficult endeavor.  Since it is 

possible for a malicious participant to deal honestly with some players and dishonestly with 

others, a trust value must extend beyond a local perspective.  This necessitates querying 

others for their opinions on opponents within the game, which introduces the possibility of 

the same malicious agents simply telling others they have an outstanding rating while their 

peers have just the opposite.  This introduces the additional possibility that different players 

will come to separate conclusions, based on the ‘noise’ introduced by the subversion.  

Sepandar et al. at Stanford University devised the EigenTrust algorithm as an answer to these 

problems. [39] 

The algorithm itself is relatively straightforward.  Each player queries every other player for 

their opinion on the rest.  This forms a matrix of relative trust, based on a score built from 

history among individual agents.  From here, a normalized matrix is constructed, then 

evaluated with the Eigenvalue Decomposition technique.  When all players perform this 

properly, they will all come up with the same left-principle eigenvector.  This vector 

represents the Eigentrust rating of each player.  The algorithm has been well received as a 

foundation for more robust distributed systems, though trust itself needs further refinement to 

be properly defined. [40]   In real distributed system deployments, Eigentrust would be done 

in a distributed fashion.   

�

�
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The basics of each round of our game can be described with an immediate snapshot of the 

game matrix.  There are essentially three choices every player can choose: lie, tell the truth, 

or stop playing with the other player.  The potential benefit from the truth is an average of 

 and , the upper and lower bounds of what the information is worth.  A lie of 

course carries no value, but checking as to whether a piece is legitimate or not does carry a 

cost.  This cost is directly determined by the probability that verification will occur Pi 

coupled with the trust  assigned to the opponent . The impact of trust is adjusted by the 

constant ϕ, in order to ensure it does not have a huge impact on existing values.  However, 

certain behaviors never consider verification as a possibility, regardless of trust, and as such 

the payoff has no effect on the result. This is where we use the variable σ to remove these 

costs from consideration for each player as needed, setting it to 0 when no verification is 

done and 1 otherwise.  Note that, for behaviors themselves, the game is not about how much 

is gained by the player but rather how much the player gains in relation to their opponent.   

Table 3.1.  The constructed strategy matrix for our game 
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3.10.1 Equilibrium Analysis 

We wish to consider the existence of a proof that demonstrates that an equilibrium exists in 

which Truth, Truth will always be selected by both players in an exchange.  In earlier 
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iterations of this work, we utilized a simpler matrix construction that did not account for a 

more robust consideration of verification calculations. In this game, trust was not considered 

a part of the equation.  Instead, verification rates were varied according to the evolutionary 

results due to randomly assigned values to those that used Withdraw as a strategy for 

punishment.  Otherwise, the original game is identical to our current one.  We prove that an 

ideal equilibrium exists with the original matrix, with greater fluctuations of information 

value and trust probabilities. 

 
Table 3.2.  A simplified version of the game matrix 

 

 
 

In a simplified version of the matrix, we consider the cost of choices in light of a much 

simpler situation.  The value of information for either player is represented by , where i is 

the player, and t is the time at which the game is considered.  This is in contrast to the 

average value of I taken from Imin and Imax. The cost of verification remains at CV, but the 

probability of verification is simply , with i once again representing the player in question.   

Consider a traditional one-shot game. We must pick a strategy in which we can guarantee our 

success. Consider Withdraw,Withdraw as a natural Nash equilibrium. At first glance, this 

would appear to be a poor choice. Clearly, better payoffs are found in Truth, Truth. However, 

if we choose Truth as our strategy of choice in this setup, the other player can choose Lie as it 

increases their utility. If we choose Lie instead, we can take advantage of another player’s 
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trust. Should they choose Truth and deviate from the equilibrium, their payoff will 

dramatically decrease while ours increases; at Lie, our payoff is as we expected. Withdraw of 

course neutralized both results. Thus, a Nash equilibrium exists at Withdraw,Withdraw. 

In practice, not all games are classified as one-shot. Some involve players that play the same 

game  multiple times. Such games enable players to use past data to both predict their 

opponent’s behavior and even affect a particular outcome. In our model, the “data sharing” 

game will be played many many times by the participating agents. This scenario can be 

easily modeled by the “repeated game” ideas from game theory literature. [44] The main 

observation in repeated games is that the honest behavior in games like the “data sharing” 

game can be enforced if the game continues to be played with probability δ > 0. In other 

words, if there are possible future gains, (i.e. if game continues with some probability) each 

agent can be motivated to be truthful. We can define the expected payoff for a player i 

participating in the repeated “data sharing” game as the  

 

 
 

where   is the strategy employed at time t, δ is the halting probability of the 

game, and gi is the gain achieved at each play of the “data sharing” game. Let u = (v1, v2) be 

the payoff vector of the repeated game. Note that if every period  is equal to some 

u then ui will be equal to u.  

To illustrate, consider an instance of the game between two intelligence agencies a1 and a2 at 

some point in time on round t. From the perspective of  is expected to be Truth for a2 

since  have all been Truth as well. According to this equation, we should 

expect the maximum utility of u for Truth, Truth. However, a1 could have a behavior that tries 

(3.1) 
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to deviate at round t if a2 has proven trustworthy. In this instance, σi will be Lie, and v will be 

greater than Truth, Truth. 

Below we prove that our repeated “data sharing” game can be used to enforce truthful 

behavior by refusing the deal with dishonest agents that caught cheating. Our proof technique 

is very similar to the one used for proving “Nash Folk” theorem from the repeated game 

theory literature [6]. Our main difference as compared to the generic Nash Folk theorem is 

that in our case opponent’s actions could not be observed unless a party to choose to verify 

the correctness of the data. Given the above “data sharing” game, we can prove that truth 

telling emerges as a Nash equilibrium as follows: 

 

Theorem 4.1 If telling the truth each round has a gain gi > 0 for both parties then there exits 

0 < δ < 1 such that telling the truth for both parties is a Nash Equilibrium for “data 

sharing” game. 

Proof 

We will prove that utility of telling the truth given that the other party tells the truth is bigger 

than any other strategy that lies with some probability p. To see that let us calculate the 

expected gain of a given party who chooses to lie with probability p > 0 at each round. Note 

that in a given round with probability (1−p) he will gain   (i.e. the gain achieved when 

both party tells the truth) and with probability p he will gain  (i.e. the gain achieved when 

he lies while the other party is telling the truth). If he cheats and is caught, he will earn zero 

for the rest of the game; otherwise, a new round starts. Under these observations, and using 

the fact that in our game  is equal to  we can write the total expected utility of lying 
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with probability p given that the other party verifies the correctness of the received data with 

probability q as 

 

�

 
 

Similarly we can write the utility of always telling the truth (denoted as uTi below) if the other 

party tells the truth as  

 

�

 
 

Note that if  , then  , for    if  Therefore, for any given 

1>δ>0, telling the truth will be a Nash equilibrium because each party has no incentive to lie 

given that the other party is telling the truth. 

End Proof 

 

Although this proof was originally constructed with a simpler version of our current game 

theory matrix, it continues to hold true in light of the addition of trust-based verifications 

rates.  This considered, we still believe there is a need to explore the outcome of simulated 

games.  First, we assume that the value of information will fluctuate over time, due to the 

market nature of the value of data and what may already be known by either country.  

(3.2) 

(3.3) 
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Second, we are also interested in the benefits of behaviors as to their relative utility gains in 

the course of the simulation, especially as it applies to an evolutionary approach.  Finally, we 

assume that not all players will be completely rational.  Thus, they may still attempt to 

circumvent the ideal situation to further their own personal gains for several reasons, 

including deliberate sabotage, freeloading, or other malicious motivations. 

3.10.2 EigenTrust 

In order to calculate trust, we use the EigenTrust algorithm for calculating trust among 

participants.  Originally designed to deal with reputation management in peer to peer 

networks, the algorithm allows each participant to calculate a global trust value for each 

player locally.  Each player constructs this trust by querying every player for their opinion of 

every other player.  These results are placed in a matrix and normalized to ensure all ratings 

are between 0 and 1, and then used as a reputation reference.  The calculations can be done 

globally or in a distributed fashion.  In both situations, all players still arrive at the same 

reputation ratings as long as a sufficient number of players are participating.  This even holds 

when malicious players attempt to inflate their personal ratings and report poor scores for the 

rest of the players, as long as measures are taken according to the original author’s work. [45] 

In our experiments, we base trust on how frequently players have been confirmed as liars in 

regards to the number of exchanges made.  If no exchanges are being made, then the rating 

for the other player that has been cut-off is as low as possible.  Each player provides the 

option to be queried for the rating at no cost to the asking player. We calculate the trust 

globally at the beginning of each round to simulate the distributed algorithm.  For simplicity, 

we assume that some unspecified system is in place to ensure that any malicious rating 



45 

 

reports do not affect the calculation.  The resulting reputation vector is then available to all 

players. 

A player i has an opinion of another player j in the form of a numerical value sij.  This 

essentially provides a snapshot consideration of a player’s past dealings.  For our scenario, 

we define sij as follows: 

 

 

 

where  represents the strategy player i has chosen for dealing with player j at time t.  If the 

j is being punished by selected Withdraw, we automatically default the opinion to a neutral 

value.  Otherwise, we use a calculation on the reputation of j at time t according to a separate 

function that considers the entire history up to the ‘present’: 

 

 

�

Here, we take a look at all choices made by j as it has dealt with i up to the specified time 

period n.  We sum the number of times j has told a lie according to the history that i has 

(3.4) 

(3.5) 
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recorded.  In other words, as long as i has verified the information and recorded it in it’s 

personal history hi at that point in time, we can count it as a positive experience.  Otherwise, 

we assume the worse and assign it a rating of 0.  The sum here is then divided by the number 

of times a choice has been made to deal and not withdraw from j.  Since none of the 

behaviors never start by withdrawal and will provide at least one opportunity to their fellow 

partners to exchange information, we will never have a dominator of 0. Note that since we 

are counting lies, the rating will actually be an inverse of the result that would normally be 

calculated in order to directly dictate that a less reliable individual will be more likely to be 

checked, and vice versa.  See table 3.1 to understand the reason this decision was made. 

We do not consider the history of the entire game in hi.  When the specified number of 

rounds has passed, and behaviors have been modified, we consider the history erased, the 

time ‘reset’, and continue the game with a fresh start for all players.  This is done due to the 

lack of “meta behaviors” that motivate players our simulations beyond the desire to select the 

best behavior.  In essence, we assume all players are naïve in the sense that their previously 

malicious strategy choices were due to an ‘innocently’ selected behavior. 

The EigenTrust algorithm we used was relatively simple, and accomplished by using the 

COLT Library for Java to compute it. [46]  The core algorithm is relatively simple when 

compared to its’ distributed counterpart: 

 

Figure 3.1.  The original author's algorithm to derive EigenTrust. [45] 
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Figure 4.1 is an excerpt from the original author’s work and outlines the algorithm.  Starting 

with an initial trust vector t, set to a uniform trust assignment vector e which has the same 

value for all players, the vector is continually modified using an aggregated matrix C of all 

individual opinions of reputation. It is computed as follows: 

Here, cij represents the normalized value opinion player i has of j with respect to the opinions 

held by i of the rest of the players.  Thus, it becomes a percentage of trust assigned to a 

particular player, and as such every entry in C is between 0 and 1.  This is very important 

when opinions differ widely or disparity occurs between those that have been cutoff and 

those that have not.  However, this is still insufficient for the EigenTrust metric, as we must 

now take into account the reputation other players have of each other.  We compute an 

aggregated value of trust according to equation 3.7.  

�

 

 

 

The entry in matrix T yields a value tik that is aggregated from the rest of the players.  In 

essence, every player asks every other player their opinions of each other in a recursive 

fashion.  This forms a global perspective of trust amongst the players to form a more accurate 

(3.7) 

(3.6) 
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snapshot of player behavior.  Factoring this back into the algorithm depicted in Figure 3.1, 

we repeatedly modify our initial vector until we arrive at the same conclusion for each player 

as equation 3.7 describes, as each row i in T will ultimately converge to trust vector t 

specified in the algorithm. 

3.10.3 Behaviors 

The Honest behavior takes a naïve approach to other players.  Truth is the only strategy ever 

chosen, and it never verifies the strategies of other players.  It has the advantage of never 

incurring the cost of verification, and it always maximizes the potential gains with other 

players by never severing the links.  An example may be a country that wishes to set an 

example, or perhaps is simply under significant amounts of scrutiny.  While this may prevail 

against behaviors that perform even the slightest verification, they will always lose in a 

competition with the Dishonest behavior.  Essentially serving as the opposite of the Honest 

behavior, this behavior simply chooses the Lie strategy regardless of the outcome.   

Not every player may believe that a predictable behavior is optimal.  The Random behavior 

picks either Truth or Lie with equal probability.  No punishment or verification is ever 

performed.  Countries that wish to avoid being anticipated may choose this strategy.  It 

carries the same benefits as the Dishonest behavior, but potentially only gains at most half 

the benefit.   

During the course of our research, we encountered a unique yet simple approach to dealing 

with undesirable behavior known as the Tit-for-Tat behavior.  Devised by Anatol Rapoport 

for a cooperative game theory contest, it follows a simple strategy selection process.  

Initially, it selects the desirable strategy, Truth.  From that point on, it simply selects the 

same strategy as its’ opponent within the game. [3] This was proven quite effective against 
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all but the most sophisticated collaborative opponents. [41] In our simulation, however, being 

able to mimic the opponent’s actions requires constant verification.  

Our own contribution to existing behaviors is the LivingAgent.  Initially, like Tit-for-Tat, the 

Truth strategy is chosen.  During each transaction, there is a probability PV that the player 

will verify whether or not the other player told the truth.  If a lie was told, the other player is 

punished by severing the link for RS rounds.  This is a sacrifice in the sense that, if the other 

player is telling the truth for at least part of the time, further opportunity will be lost.  The 

goal with this behavior is to place a high price on deviation.  A country which behaves in this 

manner may be attempting to send a message to the rest of the participants, or may simply be 

unwilling to waste time with participants whom are equally unwilling to share valid 

information.   

A variant on this behavior is the SubtleLiar, which obeys the same principle but has a 

threshold in which it will automatically choose the Lie strategy.  The net effect is a behavior 

which can take advantage of a low PV and net a slightly larger gain in information.  An 

example of this behavior may be countries that believe their fellow members trust them 

enough to be taken advantage of.  

Finally, we have the Liar.  This behavior is almost identical to that of LivingAgent, with one 

notable exception. Is called Liar simply because it essentially tries to pass itself off as a 

honest participant while consistently trying to take advantage of the right situations.  

Assuming that the value of the information about to be received is known in advance by 

both, the Liar will always lie if the received value is within a certain threshold of Imax.  Thus, 

this agent appears to capitalize on advanced information by attempting to only take a risk 

when the gain appears to be sufficient.  This threshold is determined by the constant Ivaluable. 
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3.11 Setting up the Scenario 

Our experimental setup involves creating an alliance of 100 virtual countries.  They begin 

with equal levels of trust, and hold all of their peers in the same regard.  Each experiment 

begins by distributing initial behaviors based on a configuration file.  The behaviors are 

assigned to each player based on the distribution specified within the file.  During each round 

of the simulation, a transaction is executed between all possible combinations of players 

through a virtual link.  After this round, the trust metrics are updated, history files are 

recorded, and agents receive their payoff based on the results. This payoff is used to directly 

determine the performance of the agent itself.  The value of the information varies between 

constants Imin and Imax , set to 3 and 7 respectively.  If the information provided is false, it has 

no value.  In the event verification is performed, it comes at a cost CV, set to a value of 2. 

Thus, even if all information is verified, a net gain is still possible.  When verification occurs, 

and no lie was told, it is noted as waste.  The overall score a player receives is simply the 

total value of all information sans any cost incurred. The threshold for Liar to lie is at 6.9.  

All players are assumed to be willing to change their behavior to a more effective one, based 

on the performance of their neighbors.  To simulate this, every 5,000 rounds, each agent is 

assigned a new behavior based on a weighted probability assigned based on the total gain 

achieved.  For example, if the Honest agent has an total net payoff of 10,000, while 

Dishonest has a total net payoff of 20,000, each agent has a 33% chance of choosing Honest 

and a 67% chance of choosing Dishonest.  Thus, the new distribution reflects the relative 

performance of all agents. Note that while this method does not necessarily guarantee an 

ineffective behavior will be eliminated, it will ensure that any effective choice will be much 

more likely to emerge victorious.  The simulation ends when either 100,000 rounds have 



51 

 

passed or all players have chosen the same behavior, the latter considered a ‘win’ by the 

behavior adopted by the rest. 

There are several verification rates possible for a LivingAgent-derived behavior.  To ensure a 

larger search space is explored during the experiment, a small mutation rate is introduced on 

PV for each player behavior that is copied. This allows players to adapt over time and 

consider reducing the potential waste as the system approaches an equilibrium in which all 

participants tell the truth. 

3.12 Results 

3.12.1 Liar War 

The LivingAgent performed admirably against Tit-for-Tat, even when the latter behavior 

began in the experiment with twice as many players adopting it.  Out of all experiments, 

neither the Dishonest nor the Tit-for-Tat behavior ever successfully became the dominant 

behavior.  However, the LivingAgent behavior only won the game 87% of the time, while 

Liar won the rest.  The average verification rate was 14.8% in the final behavior tally, while 

the average standard deviation was only 2%, taking an average of 15 generations to declare a 

winner.   
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Figure 3.2.  Graph of LivingAgent performance against malicious agents and TitForTat 
 
 

In figure 4.2, we see that LivingAgent successfully achieved the majority behavior despite 

beginning as a much smaller population.  At first, Liar benefits from the fact that it and the 

rest of the behaviors engage in punishment.  Those that leave the Dishonest behavior go 

towards both LivingAgent and Liar, with more towards Liar.  However, Dishonest is no 

longer being used, Tit-for-Tat begins to help LivingAgent by working slightly against Liar.  

A trend in the results is that once LivingAgent achieves half of the population, the Liar 

behavior rapidly loses ground to the point of complete loss. This appears to be the critical 

mass for the behavior in such a situation.   

When Tit-for-Tat was able to sustain itself for at least 10 generations, LivingAgent often 

benefited from this indirectly.  The Liar players, even when they initially surged ahead, 

would usually observe that Tit-for-Tat was a better choice.  As Tit-for-Tat increased, 

LivingAgent took some losses, but the efforts ended up working in concert to reduce the 

threat of a lying behavior.  Ultimately, once Tit-for-Tat was no longer in play, LivingAgent 

needed only to compete with a much smaller pool of malicious players.   
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Another trend that made itself apparent is that the verification rates of the LivingAgent did 

not correlate directly with the number of malicious agents present.  In many instances, as the 

number of Liars increased, the average rate continued to drop.  In these cases, it appears that 

players simply cannot afford to refused business with other players that ran the risk of lying. 

Essentially, the punishment method ended up only punishing the enforcer. 

3.12.2 No Living Agents 

In order to demonstrate the effectiveness of the LivingAgent approach, we ran experiments 

involving all behaviors not derived from it.  The behaviors here were only Dishonest, Honest, 

Tit-for-Tat, and Random.  The first thing we noticed is that there was automatically a large 

increase in the number of iterations necessary.  The winner was not always clear, and it 

appeared that the fluctuation in the payoffs alone caused some agents to benefit more than 

others.  The biggest competitor to Honest was strangely Dishonest, even though both used 

the polar extremes of selecting a strategy, and neither made any efforts to check information 

validity.   

Another issue that arose was how quickly Tit-For-Tat was eliminated at times within the first 

generations.  This, however, was no surprise; the verification costs no doubt came at a high 

toll to the payouts.  It contributed to the game by removing malicious behaviors consistently, 

but this often only resulted in a surge of Honest behavior adoptions.  Once Tit-for-Tat was 

eliminated, malicious behaviors again rose substantially in numbers.   
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Figure 3.3.  Performance of Honest and Random behaviors, Experiment 2 
 
 

In experiment 77 for this collection, we find that the Random behavior has won. Again, Tit-

for-Tat helps Honest surge ahead briefly, but the verification costs cause it to fail to function 

after only 7 generations.  From that point on, Honest appears to be the certain victor, 

eliminating Dishonest.  At generation 92, Random begins to succeed. Essentially, because 

Random does not discriminate against which players it lies to, it runs the risk of dropping off 

at just shy of 50% of the player market.  This happens twice during the simulation, but due to 

fluctuations in information value, it eventually achieves victory.  Note that this particular 

equilibrium took 197 generations to achieve, and it was primarily based on the delta in the 

value gained. 

There were only three winning behaviors out of all the experiments.  The Honest behavior 

only achieved the majority 26.1% of the time.  Out of those instances, only 84% of them 

actually resulted in an equilibrium behavior.  The Random behavior faired equally well, with 

only a slightly smaller number of wins at 23.3%.  However, the Dishonest behavior beat both 

of them twice as often at 53.3% as either of them.   
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Figure 3.4.  Performance of Honest and Random behaviors, Experiment 1 
 

3.12.3  Mixed Environment 

In reality, players within these games can vary widely in their ulterior motives, beliefs, and 

decisions.  To observe this, we wanted to observe all of the devised behaviors in action.  

Unsurprisingly, Honest won 99% of all games played.  The abundance of malicious agents, 

coupled with a roughly 3:1 starting ratio to the Honest behavior, allows LivingAgent to 

flourish briefly.  However, as malicious agents begin to disappear due to lack of relative 

performance, the appeal of the Honest approach eventually coerces a majority of agents away 

from it.  The loss of Dishonest and Random predictably caused a 25% drop in LivingAgent’s 

presence. 
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Figure 3.5.  Simulation of all behavioral models 
 

On the surface, it may appear that our own LivingAgent is a failure under these 

circumstances. If our goal was simply to find the ‘perfect’ behavior, this would indeed be 

true.  However, our constructed behavior helps to create an environment in which the Honest 

behavior can flourish.  Thus, the end result is still the ideal, truth-telling environment.  Since 

previous results demonstrated that Honest would normally fail against the malicious 

competitors, the introduction of our behavior has acted as an indirect policing force within 

the system.  The Honest behavior achieved the majority roughly 97% of the time within our 

initial experiments, over three times what it achieved under similar conditions on its’ own.   

Additional experiments were performed to observe the minimum behavioral mix necessary to 

ensure Honest would succeed, performed in the form of ratios between LivingAgent and 

Honest.  When equal parts of both behaviors were present, Honest won 86% of the time.  

Increasing the ratio of LivingAgent to Honest to 2:1, it increased to 92% of the time.  At a 

ratio of 3:1, an effectiveness of nearly 100% was achieved.  Thus, although LivingAgent 
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benefited the rest of the group in achieving a Truth-telling majority, a significant number of 

the agents needed to have this behavior to guarantee it.   

3.13 Conclusions 

The overall experiment was a relative success.  When enough players choose a behavior that 

reflects our approach to punishment, the malicious behaviors were successfully eliminated 

from consideration.  The underlying nature of LivingAgent allowed it to defeat even variants 

of its’ own behavior involving light amounts of deviation.  However, the same nature of the 

persistent verification meant that the behavior did not succeed against the Honest behavior, 

which performed no verification whatsoever despite the circumstances.  Even in this 

scenario, the ideal situation still arose, allowing players to conclude that honesty is indeed the 

best choice. 

However, there remains an undesirable scenario in which our equilibrium does not hold.  

Consider several players which have decided to adopt behaviors which are truthful up to time 

n.  At time n+1, they revert to telling nothing but lies.  If the rest of the players have reached 

a point at which no policing behaviors such as the LivingAgent are left, then there exists the 

possibility that they will subvert the ideal situation by deviating.  Thus, the ideal situation 

requires several players to make a continual sacrifice for the group by adopting the 

LivingAgent strategy with regards to the losses which would otherwise be incurred after n.  

We hope to increase the robustness of our punishment method in scenarios closer to reality. 

In real life, information cannot always be verified with 100% accuracy, nor do even the best 

intelligence agencies guarantee that information provided will be completely true.  Such 

inadvertent mistakes would result in a system which potentially punish otherwise trustworthy 
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players.  This can be addressed with a mixture of a higher tolerance for lies and a slightly 

more relaxed punishment.   

The growing size of networks such as the internet and the increasing use of distributed 

systems suggest that centralized authority approaches will be insufficient��Insuring behavioral 

choices by members of peer-to-peer networks requires an approach which can scale as much 

as the system itself.  We believe our work offers a solution to the problem of encouraging 

behavior when players become responsible for their own outcome.   �

The nature of international politics and the variety of societal mindsets across the nations of 

this era serves as a subtle reminder that game theory must always account for varied 

mindsets.  The agendas which emerge from centuries of historical affiliations and conflict 

can often result in situations that seem to escape logical reasoning without the appropriate 

context.  However, when the security of a nation is in peril, these factors must be 

accommodated in such a way that permits the flow of information in a timely manner.   
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CHAPTER 4 

SIMULATING BIOTERRORISM THROUGH EPIDEMIOLOGY 

APPROXIMATION 

4.14 Biological vs. Traditional Attacks 

Much of the motivation in cooperation between countries at this point in time is due to a 

mutual desire to deal with terrorism.  Although some organizations pose only a domestic 

threat, many terrorist groups have operations which span the world.  Intelligence is shared in 

these circumstances to avoid deadly attacks which threaten the safety of their citizens.  

However, the majority of the attacks carried out up to this point of history have been limited 

to the original victims.  Bioterrorism potentially affects far more than just the initial targets, 

and poses an even greater threat than ‘traditional’ terrorism acts.  Even when the exchange of 

information is successful, even the groups themselves which plan to be responsible for such 

an act may be unaware of the implications their attack could have.  Understanding the impact 

can provide a significant advantage for a defending country. [42] To date, no known terrorist 

acts involving biological agents has spread beyond the initial attack itself. 

However, the lack of full-scale incidents of biological warfare in recent world history has 

created a difficult situation for those attempting to prepare for an epidemic.  Several isolated 

incidents involving potential weapons, such as the SARS outbreak in Canada [43], provide 

glimpses into how a situation might unfold.  Rigorous study of diseases and agents that could 

be used is undeniably helpful, but the need for data remains. The only safe means by which 

this data can be provided is through the use of epidemiological simulations.    
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A traditional but popular approach for simulating epidemics is the SIR model. This 

compartmental mathematical approach is based on probabilistic transitions over the passage 

of time. It is considered one of the most widely used models in epidemiology [21]. 

Individuals are modeled by assigning them to one of three states: susceptible, infected, and 

recovered. A susceptible individual is considered one whom can be infected. They have no 

natural or artificial immunity to the contagion.  An infected individual is considered stricken 

with a disease and contagious to those that are susceptible.  Eventually, an infected person 

will no longer be contagious by transitioning to ‘recovered’, either by successfully 

overcoming the disease and acquiring immunity or dying.  The transitions are based on three 

factors: the probability of contact between susceptible and infected groups, the rate of 

infection, and the rate of recovery.  Any considerations of intervention or exception must be 

captured through these rates. 

Although popular, the SIR model falls short in several key areas.  First, all participants are 

considered identical in terms of susceptibility.  Someone whom interacts with a variety of 

individuals on a daily basis is considered just as susceptible as someone whom does not 

interact at all. Second, the area being simulated is completely homogenous.  There are no 

concepts in the model of locations, transportation, or variance in rates.  Finally, the model 

requires a broad generalization of infection rates and the percentage of a population in any 

state.  Complex dynamic or dependent factors simply cannot be accounted for without 

collapsing them into a single dimension.   

4.15 Our Work 

Our own model is a hybridization of social interactions on a household scale, situation 

intervention, and the simplicity of the SIR approach.  The system arose out of a need for a 
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deterministic model that can balance a desire for accuracy in representing a potential scenario 

with computational resources and time.  Recent work has suggested that more detailed 

models of social networks have a diminished role over the results in the spread of an 

epidemic. [14] We believe we can generalize complex interactions into a much more concise 

simulation without adversely affecting accuracy. The ultimate goal of our research is to 

integrate a model for biological warfare with a system that can evaluate multiple attacks with 

respect to passive and active defenses.  As a result, we have created a simulation that serves 

as an approximation of the impact of a biological attack with speed in mind, allowing us to 

explore a large search space in a relatively shorter amount of time as compared to existing 

detailed models.   

The base component of the simulation is the home unit.  A home can range in size from a 

single individual to a large household.  Within this unit, the probable states of the individuals 

are tracked via a single vector of susceptibility, infection, and recovery.   Given a population 

distribution of a region and basic statistical data, we can easily create a series of family units 

that represent the basic social components from a rural community to a major metropolitan 

area.  A single home unit with no interaction is essentially a basic representation of the SIR 

model. 

Interaction occurs within what we call social network theaters.  A theater is essentially any 

gathering area at which two or more members of a home unit meet.  The probability of 

interaction depends on the type of location and the social interaction possible at it.  To 

capture this, separate infection rates are assignable to each theater.   

In the event of a life-threatening scenario such as a bioterrorist attack, we assume a civil 

authority will act at some point to prevent a full-scale epidemic.  We model such an entity by 
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providing means in our models to affect social theaters and the probabilities associated with 

state transitions.  For simplicity at this point, we will not consider resource constraints, nor 

will we model how an event is detected. The recognition of an attack will be simulated using 

a variable delay.  After this delay has passed, the infection is officially recognized. 

Several known types of options are available deal with an epidemic. [19] [44] [45]  The most 

basic form of prevention is by inoculating the population against an expected contagion.  

Several options exist at this level, ranging from key personnel to entire cities.  Anyone 

inoculated is automatically considered recovered. Second, a quarantine strategy can be used 

to isolate the infected population from the susceptible population.  This requires the explicit 

removal of individuals from home units to appropriate facilities, and can be simulated on a 

fractional basis representing probability of removal with varying levels of accuracy.  Third, 

the infection and recovery rates can be altered, through such means as allocating more 

resources to medical personnel and educating the general public on means to avoid infection.  

Finally, a potentially controversial but interesting option is the isolation of communities by 

temporarily eliminating social gathering areas.  For example, public schools could be closed, 

or martial law could be declared.  The motivating factor is finding ways to force the 

population at risk to remain at home.  Such methods could reduce the number of vectors over 

which an infection could spread. 

A day is represented by multiple distinct time periods.  We use a modified form of the SIR 

model to represent the various contributions by the involved members of home units, as seen 

in equation set 4.1.  We have broken down the contributions by both those participating in a 

theater and those at home during each segment as α and β, respectively. 
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(4.1) 

 

 

The current time is represented as t.  Individually, each home unit as previously mentioned is 

actually a self-contained SIR model representation.  However, since members of the home 

unit can participate in social theaters, the calculations required to update the model are 

influenced directly and indirectly by the rest of the units in the simulation.   

The first function, ai, determines how many susceptible individuals have become infectious 

in home unit i due to social theaters. Every one of the mi theaters which i participates in must 

be considered.  For each theater k in the set, there are nk participants.  The W function, given 

time t, home unit i, and work theater k of i, returns 1 if the home unit participates and 0 if it 

does not. This allows us to distinguish types of theaters across time. No participation means 

that the specified theater does not impact any result during t.  

Next, we must consider the individual infection rate for theater k, as specified by λk. We 

assume that the infection rate starts out at some level of ‘normal’, uninhibited probability. 

However, at some point in time, there exists the possibility that a civil authority will step in 

and decrease this factor by bolstering public awareness, providing necessary information to 

hospitals to enhance treatment, etc.  We represent this by adding a new function Λ(t,λk) 

which can factor in both the custom rate and any modifiers we need, applying them at a 

predetermined time to represent detection and subsequent intervention.   

Now, we must consider the probability that we will have a susceptible individual interact 

with an infected individual.  The size of each household is hj of the nk households present in 
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the theater. We take the susceptible population Sj(t) of j, divide it by the total size of j, and 

sum the results.  This is repeated for Ij(t).  Note that the sum for both populations is an actual 

head count; hence the need to convert the total into a probability for each.  We do this by 

dividing each summation result by nk, the size of theater k.  The product the results is the 

probability a susceptible individual will encounter an infected individual at the site.   

The next step is to determine the part of the household being affected.  This is obtained by 

taking the susceptible population of the home unit Si(t) and dividing it by the size of the 

home hi.  Note that this does not entirely compartmentalize participants from each home unit 

and suggests that a single individual from the household is selected with equal probability to 

participate.  We allow this to simplify the calculations necessary to avoid tracking each 

individual separately in a pure agent-based format.  

Finally, we consider whether or not social theater k is going to impact household i.  We base 

this on three factors.  The time of day determines which time segment the simulation is in 

and which theaters the home units are involved in.  The household i determines which theater 

participation set is being referenced by k.  The result of this function is 1 if the household 

will be involved, and 0 if it is not.   

The second calculation βi determines how many people, during the time segment at t, stayed 

home and participated in the home unit update model.  Most of our calculations here are 

identical to those of the original SIR model.  We calculate the probability that a susceptible 

person at home will become infected by those already carrying the contagion. However, we 

also must calculate the portion of the individual updated by considering the fraction not 

present.  We thus determine the number of people not present, divide it by the total number 

of people in the home unit, and invert the percentage by subtracting it from 1.  We implement 
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a constraint on the W function, requiring that a home unit can never participate in more 

theaters than there are members hi.  This allows us to sum up this participation by type 

assigned to a given time period.   

The calculations for recovery of infected individuals are much simpler.  Regardless of 

theaters that they participate in, individuals recover at a uniform rate as determined by Γ(t, γ) 

during the course of the simulation, in a similar fashion to Λ.  We assume that it is possible 

for a civil authority to affect the base recovery rate γ.  For example, a state can bolster the 

level of hospital care by bringing in doctors from other locations, providing emergency 

resources to the existing facilities. Other possibilities include direct emergency funding and 

simply making a medical examiner aware of what symptoms to look for. 

When no social theaters are considered in use, the simulation enters a ‘home’ period.  During 

this portion of the day, the members of the home units only interact internally.  The W 

function returns 0 for any work entry at this time.  Essentially, each home unit is calculated 

as if it were an entirely self-contained SIR model. 

It is important to note the use of ‘fuzzy’ states in the home units.  The three population states 

are considered probabilities of the household’s overall condition.  For example, a susceptible 

value of 80% and an infection value of 20% mean that there is a 1 out of 5 chance for each 

member of the household to be sick.  Note that a small attack can potentially infect the same 

size of a population as a larger attack when no intervention is present; there may simply be a 

smaller chance that each member of the population is infected.  Note that within a unit there 

is not necessarily a distinction in how many members are infected. 
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4.16 Experimental Setup 

4.16.1  Population Generation 

For our experiments, we wanted to have a variety of home units with a predictable set of 

sizes based on household statistics.  Starting with a population of 10,000 we divided them 

into groups ranging from a single individual to a family of size 6.  The biggest set was the 

three person household.  Exactly 5,165 total households were generated from this pool of 

individuals and used consistently throughout all of our experiments. 

4.16.2 Theater Generation 

The social theaters are generated by the population size that they will ultimately contain.  The 

assignments themselves are divided based on power law averages, used to generate random 

sizes. To keep these assignments consistent, we use a pre-determined seed in an isolated 

random number generator for each distribution session.  For work theaters, we have a 

maximum population of 5,000 spread of theaters randomly generated by power law from size 

1 to 152.  Education and recreation theaters are allocated 2,000 people each, with maximum 

sizes of 900 and 25, respectively. These assignments give us 57 theaters for work, 144 

theaters for recreation, and 3 theaters for education.  We use this assignment throughout all 

of our experiments.  Note that we can use specific assignments if needed for more accurate 

representations of populated theaters. We do not consider high-traffic transportation hubs 

such as airports; not all cities have them, and our simulated city is comprised of only 10,000 

people.  Adding in these locations in future work can be done by simply adding a large 

theater.  
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4.16.3 Time  

We divide the day into three 8-hour segments.  The first segment represents participation in 

both the job market and education.  Bioterrorist attacks would be most effective here due to a 

high transitory population.  Those that have a job go to their workspace and interact with 

coworkers.  The infection rate at a business is only 80% of the baseline, due to the formal 

interaction and greater possible isolation during the time period.  However, other household 

members may instead attend an educational institution.  Here, the levels vary based on age 

groups, but the general proximity of people to each other is far greater due to enclosed 

classroom environments.  To represent this, the infection rate is 10% greater than the 

baseline.   

Next, in the second segment we have recreational pursuits.  Fewer people are involved while 

interaction is less formal.  We assert that such groups would typically be much smaller than 

those found during the previous segment.  The resulting infection rate is estimated at 90% of 

the baseline. 

Finally, we end with a simulation of the household, representing a normal sleep cycle and 

estimated home visitation pattern.  During this period we assume that the family is most 

susceptible to the spread of a contagion, due to both close physical proximity and deeper 

levels of interaction.  The infected rate used during this period is the strict baseline rate 

established throughout the simulation. 

At any point, if a person is not participating in one of the theaters in the first two segments, 

they are assumed to be at home.  Those remaining in the home unit are calculated the same 

way as during the first segment, although the effects are reduced based on the present number 
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of people.  This reflects parts of the population that either does not work and/or prefer to 

remain at home during the evening. 

When assigning parts of the population to social theaters we enforce a few rules of 

assignment. We limit membership to one theater per individual per segment.  Multiple 

members of a household can participate in the same theater, and one individual can 

participate in multiple theaters on different segments.  However, we do not model those that 

hold multiple jobs.  We also do not model those with jobs at night or other parts of the day; 

jobs and educational participation is limited to the second eight-hour segment. 

4.17 Fighting Virtual Epidemics 

We explored several factors in our models across a spectrum of infection and recovery rates 

to determine some of the most effective ways of dealing with outbreaks of infectious 

diseases.  To consider this, we experimented with the shutting down of social network 

theaters with varying degrees of severity.  In theory, if any given theater is no longer in play, 

we essentially remove its’ node and corresponding links from the social network. When this 

shutdown occurs is dependent on when the attack is either announced by the responsible 

party or the civil authorities are aware of the situation.  Detection is outside of the scope of 

this research.  To simplify this, we experiment with specific dates on which the shutdown 

occurs. 

In all of our experiments, we simulated a hypothetical contagion over the course of 40 days.  

We set our base infection rate λ to 60% and our recovery rate γ  to 25%. Our goal is to 

represent a relatively aggressive infection that takes a minimum of several days to recover 

from. The initial infection is of a single person in the same household each time. 
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We first wanted to establish the relevancy of our work to the existing body of research in the 

SIR model. To establish this, we compared the original model to our own and attempted to 

find correlation between them. We found that the characteristics of the infection rate were 

virtually identical with some adjustments to reflect the average infection rate across different 

theaters.  For example, a traditional model with an infection rate of 72.5% and a recovery 

rate of 33% acted similarly to our own model under our default setup.  However, the matches 

were not perfect.  Although the total number of infections and the nature of the peak 

infection count were within 1% of each other, our own model did not reach the peak until a 

few days later.  This difference was traced back to how our model requires a lead time for the 

infection to spread across the social network from the initial point of contact, versus the 

original model which stated the infection could potentially reach anyone in the city on day 

one. 
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Figure 4.1.  Recovery totals over a 40-day period with variance in the 
 

The results showed the impact of the epidemic can be substantially reduced through the 

closing down of social theaters even with a significant delay.  Analysis shows that shutting 

down any kind of social theater yielded a net loss to the total number of individuals infected 

over time.  Shutting down all public education buildings reduced the tally by a minimum of 
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8% as late as the 7th day after the attack.  When businesses were asked to close, the results 

showed a 19.5% reduction of infection totals under total cooperation.   

In reality, however, there is no guarantee of cooperation when shutting down social gathering 

areas of any kind beyond public institutions.  We next experimented with requests to shut 

down of varying efficiency, ranging from one out of every five organizations complying with 

the request to complete cooperation.  Our results suggest that the degree of compliance is 

directly proportional to the effectiveness of the request. For example, a request to close all 

educational and work theatres on the third day has a 60% compliance rate.  In this scenario 

4,640 are infected; without any intervention, the normal result would have been 5,367.  This 

translates into a 13.5% improvement. However, at 100% compliance, only 3,769 people 

would become sick, a more efficient 29.8% reduction.  Altercation of the recovery rates in 

our model unsurprisingly assisted in reducing the total number of infections.  However, the 

effect was relegated below a particular threshold.  When the recovery rate was increased by 

10% and the infection rate reduced by the same amount, the modification reduced the 

number of infected individuals to 4,549, a 20% decrease for any time period between initial 

release and day 9.  However, beyond that point, there is a dramatic increase in infection 

counts up to day 15, after which the total is identical to no intervention at all.  This 

essentially translates into a two-week window for any altercations to existing rates.  Looking 

at these rates individually in our experiments, it is clear that prohibiting the spread of 

infection will benefit more than enhancing recovery; however, in practical applications, 

doing both would be ideal.   

For an overall analysis of the techniques we have considered, we ran a comprehensive 

battery of experiments across several days (see Fig. 4.2).  If the epidemic can be detected 
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early, the single most effective technique is closing work with 80% compliance in terms of 

the peak severity of the epidemic as well as a 15.1% reduction in the total number of 

infections.  However, adjustment of the infection and recovery rates offered the greatest 

reduction in infections, reducing the total by 16.4%.   
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Figure 4.2.  The infection peaks for various civil intervention methods. 
 

Across a range of days on which these combinations of interventions occur, we find that the 

benefits are fairly consistent.  However, as the delay between the introduction of the 

contagion and its’ detection increases, the differences among these options begins to shrink.  

Intervention on the third day can be up to a 48.6% (see Fig. 4.3) decrease in the number of 

infections when using all of the methods available.  However, beyond day 13, we found that 

the overall benefits were only a marginal variance amongst all combinations of options.   

We analyzed a worse-case scenario epidemic with the same infection rate but a recovery rate 

of only 5%, representing a contagion that was much more difficult to treat.  Under these 

conditions, even a combination of 80% compliance in the closing of both work and school 

theaters, a 10% boost to recovery rates, and a 10% reduction of infection rates, doing this as 
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early as the 3rd day only reduced the total number of infections by 7.5%.  When dealing with 

these scenarios, even aggressive policies on civil intervention would make very little 

difference in the outcome.  

0

1000

2000

3000

4000

5000

6000

3 5 7 9 11 13 15 17 19

Day

In
fe

c
ti
o

n
 C

o
u

n
t

Control

Close School 80%
Compliance

Close Work 80% Compliance

Intervene Recovery +10%,
Infection -10%

Intervene Recovery +10%,
Infection -10% Close Work
80% Compliance

Intervene Recovery +10%,
Infection -10% Close School
80% Compliance

Intervene Recovery +10%,
Infection -10% Close Work &
School 80% Compliance

 

Figure 4.3.  Intervention method vs. the day in which it was implemented 
 

In terms of performance, the time taken to run each experiment was tied closely to the 

number of social theatres involved.  The code was written in Java and carried out on a 2.0 

GHz dual-core machine with 2GB of RAM.  Only one core is used by the application. For a 

population of 10,000 interacting across 220 social theatres, each day took approximately half 

a minute.  Running non-stop for 24 hours, we can simulate roughly 2,800 days.  Since we 

evaluated many of our experiments for 40 virtual days, this translates into approximately 72 

simulations a real day.  Population size by design has no impact on the performance. 

4.18 Limitations 

Although these quarantine methods could be considered controversial under certain political 

ideologies, our results demonstrate that they are potentially highly effective.  In a democratic 

country such as the United States, the protection of civil liberties has often been at odds with 
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the need for greater security.  However, regardless of public opinion, these options should 

not be eliminated.  In fact, in instances where inoculation is not a viable option, quarantine 

efforts may be the only way to ensure that the epidemic does not spread any farther.   

However, as these studies also suggest, all of the methods will only be effective if used 

within a reasonable amount of time from the original infection.  Once the infection has 

spread beyond a particular threshold, the effort taken to act may be wasted.  We conclude 

then that there must be particular emphasis in the field of bioterrorism research to analyze 

and improve detection methods.  Likewise, there must also be a rudimentary communication 

structure in place that brings any possibility of an epidemic to the attention of the appropriate 

civil authorities as quickly as possible.   
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CHAPTER 5 

THE INFLUENCE OF PERSONAL RELATIONSHIPS AND ATTACK VECTORS 

ON DISEASE TRANSMISSION WITHIN SOCIAL THEATRES 

5.19 The Role of Associations in Biological Destruction 

Social networks play a particularly important role in the study of epidemiology as direct or 

indirect contact between individuals represents the most crucial vector by which a contagion 

can spread.  When performing a case study of the spread of diseases through personal 

contact, a vast majority of researchers with access to the patients will often perform surveys 

on personal connections, particularly in the studies of sexually transmitted diseases. [46] [47] 

[48] [13] Although it may be difficult or otherwise impractical to do the same in light of an 

airborne contagion, using approximate representations of these networks can yield more 

accurate results.  This, in turn, allows us to gather a better understanding of a potential 

biological attack and generate more accurate results. 

The nature of propagation within graphs yields the trivial observation that starting an 

infection at one node may yield different results than beginning at another.  Biological 

attacks present the responsible party the opportunity of determining who will be initially 

afflicted.  The possible targets simply referred to as attack vectors from this point forward, 

may introduce serious implications for a vulnerable population.  For example, an attack on a 

few individuals in a crowded public gathering could yield a more effective attack than 

targeting a set of likeminded individuals who may share the same acquaintances within a 

social network.  The latter would likely yield an infection that would take a longer time to 



77 

 

spread than the former due to transmission vector overlap, while the former holds promise of 

reaching more of the network quickly due to diversity of associations.  

5.19.1 Refining the Growth of an Epidemic 

We built our prior epidemiological model with home units forming a cohesive, single unit. 

While this is a highly effective use of computational resources, it reduces the details of 

transmission vectors in such a way that if an individual arrives from a social theatre at home 

with an infected state of 100% and the three other members leave for recreational theatres in 

the next time period, they automatically ‘bring’ 25% of the infection with them.  This of 

course is due to a lack of distinction in what portion of the household is what state.   

The added detail of additional nodes also provides a way to simplify the mathematics of the 

problem.  Instead of treating home units as a special case, homes can simply be viewed as the 

default social theatre when individuals do not go anywhere else.  This makes our equations 

more elegant in their functionality through the use of similar mechanics.  We can also 

remove the original calculations that offset the size of a home unit to ensure only individual 

contributions are made to the infection model.   

 

�

�

�

(5.1) 
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The core of the math in this simulation is still virtually identical to that of the SIR model.  

Time passes discretely via variable t.  For a given individual i, we want to track the 

percentage that they are in one of the three possible states: susceptible, infected, and 

recovered.  The chance of becoming sick is tracked by bi based on time.  This delta is 

subtracted from the susceptible percentage and added to the infected percentage.  The chance 

of recovery determines whether the individual will remain ill or no longer be contagious.   

 

�

 

 

We track the social theatres by using the bi function, which represents how the individual has 

been affected by their social interactions.  This is essentially the effect of all theatre 

interactions, including the home.  The group Pi represents a list of all theatres excluding the 

home that the individual belongs to.  The home itself is tracked as hi.   Wi represents the 

participation of the individual in each theatre given a particular time. This can be thought of 

(5.2) 
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as a matrix for each individual in which all rows and columns add up to 1; only one theatre 

can be visited at any given point in time.  
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At social theatres, the population tallies are formed from a composite of each participating 

individual’s state.  As an additional improvement to the simulation in the previous chapter, 

we model the social network of an individual at each theatre. Two people within the theatre 

can have a link between them of four discrete strengths.  First, there are close friends. These 

are the people whom share an association based on years of interaction, and are the most 

likely vector by which a contagion is passed.  Next, there are the regular friends based on 

people who know each other through either their work or mutual interest.  These people have 

less interaction than close friends but still associate with each other at least once a week.  

After this classification are the associates.  Typically, two associates will only have contact 

roughly once a month.  Finally, we classify the rest of the links as strangers.  These are 

people who do not know each other personally but still have a small chance of interacting at 

the theatre. [49] 

At a theatre, the probability that an individual will be infected by another individual is based 

on three factors.  First, we calculate the probability that the susceptible individual will 

(5.3) 
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encounter an infected individual. This is based on the number of individuals in either state at 

the theatre itself.  Second, we account for the probability that this particular individual will 

be infected out of all theatre participants.  Finally, we consider the infection rate in relation to 

this individual’s social network and the theatre’s infection rate.  The social network impact is 

determined by the average of all associations.  The probability of an individual will recover is 

simply the chance that they will either survive the affliction or expire.  

We keep all of the same options that were available in our prior simulation for dealing with 

an outbreak.  Inoculations are available, but only half of the population can be vaccinated due 

to limited supplies in our motivating scenario to consider more difficult circumstances. 

Intervention in the form of providing additional funding is available to alter the infection and 

recovery rates, but in such a way that the maximum change must be within 10% of the 

original rates.  Closings remain an option, but we do not consider partial compliance as we 

have already explored it in the previous chapter. 

5.20 Improving the Virtual Incubation Process 

For our tests, we created a city of 400,000 citizens.  Within this population, we assigned 

membership consistently across all experiments in three kinds of social theatres: businesses, 

educational institutions, and recreational gatherings.  These theatres are limited in this set of 

experiments to an average of 100 members; although several larger businesses may exist, we 

surmised that the typical commercial office space would be chaotic if setup in such a way 

that permitted a larger group to coexist in the same area.  We assume they have been grouped 

either by floor or building.  While migration between parts of facilities is certainly possible, 

we disregard the effects and allow the network to naturally reflect weaker linking that results 

from it.   



81 

 

Educational institutions involve closer contact with larger groups of individuals in a smaller 

amount of space, resulting in a higher relative transmission rate.  Such institutions include a 

full range of possibilities, ranging from public elementary schools to universities.  While they 

present a more dangerous opportunity for epidemics to spread, in many societies the majority 

of these institutions are publicly funded and controlled by the government.  Thus, in the 

event of an emergency, we assume the defending country will have enough control to shut all 

of them down indefinitely in the interest of student safety with little repercussion.   

During the later parts of the day, some individuals may still choose to participate in a smaller 

group activity. Contact here is among much smaller groups, but the level of interaction tends 

to be much higher, resulting in a more aggressive infection rate balanced against the 

presumably relaxing nature of the activity.  These groups are also harder to control; social 

functions can be difficult to regulate due to societal views, personal freedoms, and no 

guarantee of a single location at which the activities take place.  

When any individual is not attending any of the theatres during the day and evening periods, 

they are assumed to be at their place of residence.  This has been transformed into a social 

theatre which any individual not attending another must return to.  However, relationships at 

the home are assumed to be homogenous for the purposes of simplifying our simulation 

overhead.  

By default, our theatre setup for relationships uses a bias representative of work within social 

networking on the levels and frequency of friendship.  We assume that close friends are rare, 

composing 5% of a person’s social circle and are likely to meet up with the individual at least 

once a day.  A regular friend is someone who one is often likely to have twice as many of at 

10% of their immediate network but will only be seen on average once a week.  Associates 
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are those we interact with due to professions, casual acquaintances, and other people we are 

likely to see at most once a month.  They compose an average of 20% of an immediate 

network.  Finally, there are strangers, people whom are often seen no more than once a year, 

compromising the rest of the people known for most individuals. These figures are based on 

information derived through social study and represent an approximation of the results. [50] 

We now consider a number of possible places in which an infection can begin, known as 

attack vectors.  These possibilities were isolated to 3 targets in 3 degrees of intensity.  We 

named them based on the target t and size s, using the simple designation of t-s in our 

experiments to indicate the attack vector. This is done in part to simplify the analysis of all 

possible scenarios; however, in a practical light, this makes sense. Consider the motivations 

of many organizations willing to engage in biological warfare on a civilian population.  Such 

an attack would take a considerable investment in time, resources, and money.  We assume 

that they in turn would want to make a considerable impact on the society or rival 

organization in question, and as such would prefer to introduce the contagion to a select list 

of highly desirable targets. In these situations, we assume that the protecting agency has 

isolated the most likely people that the attacks will be directed at due to existing research.   

5.20.1 Improving Experiment Throughput 

In the previous chapter, experiments were run on a single processor with little need to expand 

resource consumption.  As we increased the complexity of our model and the scope of our 

experiments, we realized that we needed to maximize the resources available.  To this end, 

we have created a new generic platform for running stand-alone experiments, which we have 

dubbed Project Wildfire.   
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Each experiment is setup according to an initialization string that carries information such as 

infection rates and where to start the contagion. These setup strings are stored at a central 

server publicly available on the internet.  The actual execution of the experiments are carried 

out by agents we call contractors that are given the location and port to reach the server at.  

Each contractor begins by registering with the server using a specified nickname for a unique 

identification number.  Then, the server is queried for the next available job.  This job is 

retrieved, setup, and executed on the contractor’s local system.  Updates are sent back to the 

server periodically, yielding information such as the current progress and status of the 

system.  After a job is complete, an informational packet containing the resulting data is sent 

back by the client, which the server stores and records according to the original order of the 

list of experiments.  The contractor then asks for another job and repeats the process until no 

more experiments are available.  This setup allowed us to leverage computers anywhere on 

the internet, enabling us to pool remote resources and increase our overall throughput.  Once 

all experiments have been completed, a results file is created as if the experiments were run 

on a single system.   

Although we enjoyed a remarkable increase in efficiency at first, problems arose in long-term 

experiments that required predictable uptime of all participants. Several levels of redundancy 

were created to harden the system against data loss.  First, all jobs must be updated by their 

respective owners within a time period of a few minutes.  Should the contractor freeze, crash, 

or simply fail to report, their assigned job is released and allocated to another.  Second, a 

parallel thread runs with the job manager and periodically writes a checkpoint of complete 

and incomplete jobs to the local storage. If the manager itself shuts down or must be turned 

off, the checkpoint can be processed and given to the next instance of the server, allowing it 
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to pick up where the other had left off.  Finally, simple mathematical gauges were added that 

allowed the user to know how many jobs had actually been completed, how many were left, 

the speed at which the system was processing a single job, and an estimate of the time 

necessary to complete the work.  Our goal is to make the system and code available to the 

academic community by December of 2008, in the hopes that others could take advantage of 

this simple approach. 

5.21 Simulating Epidemics across Multiple Dimensions of Choice 

In light of the choices available to both the attacker and defender, we simulated several 

scenarios to explore the space of strategies available.  The multitude of options to select from 

allowed us to create several matrices of choices to run experiments on.  The goal in our work 

here is to understand how our refined experimental model predicts the outcome of an attack 

with the specified origin and defensive choices made.   

5.21.1 Random Inoculation with Isolation Methods 

Comparing the closings of several theatres with respect to varying levels of random 

inoculation, we find that the two methods continue to scale well together in our revised 

model.  The number of inoculations performed in advance linearly scaled back the total 

number of infections.  As more of the population was inoculated, the effect of the closings 

carried a similar effect.  However, the impact of the closings themselves diminished as a later 

date was chosen.  After day 3, the impact on the total number of infections became 

negligible. The peak infection rates suffered from the same issue.   
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Figure 5.1.  Inoculation sizes vs. the closing down of business and education 
 

The point at which the peak number of infections occurred was pushed back subtly over time. 

As higher levels of inoculations were considered, the nature of how the infection progressed 

changed considerably.  When half of the population was inoculated, the infection essentially 

arrived in three ‘waves’ that became more distinct at higher levels of inoculations.  For 

example, when 25% of the population was inoculated and both work and school theatres 

were closed on day 3, the infection stalled or peaked on days 41, 59, and 67.  However, when 

the inoculation was increased to 50%, the peaks shifted to later dates on days 46, 60, and 69.   

The importance of peaks and when they occur is paramount in dealing with an epidemic.  

The peak of an infection determines the maximum amount of resources necessary to attend to 

the needs of the ill.  For example, consider a hospital dealing with infected patients.  If the 

number of patients at any given time does not exceed 100, then the 120 beds reserved for 

those afflicted is never exceeded.  Even if the infected population holds steady for weeks at a 

time, patients can still be given the level of care necessary.  However, if a shorter period of 

infection ramps up to a peak of 200 patients, then the hospital must either invest heavier 

resources in meeting the capacity or turn patients away to other facilities which hopefully are 
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not suffering from the same problem.  The complexity of our social network overlaid with 

the SIR model has resulted in delays as the contagion propagates into members of a 

household, develops, and eventually is passed on to other individuals via theatres.  While we 

saw this to an extent in chapter 4, this has become much more pronounced in our revised 

simulation. 

We assume that individuals remaining at home will have a lower probability of sickness than 

those at most theatres. However, we have considered other experiments where the opposite 

situation was assumed.  One of the more disturbing finds in this line of experimentation is the 

effectiveness of a contagion incubating within members remaining within a home versus the 

attendance of social theatres.  We assume that social networks within the home are irrelevant 

for most contagions in that the proximity and standard level of contact is the same.  If the 

infection rate at the home is higher as a result of this factor, the potential spread of the 

contagion becomes extremely important. Once the infection has spread across all 

transmission vectors, closing social theatres will not benefit the population in this situation. 

Additionally, if the infection rate becomes higher due to social networking within the home 

theatre than other theatres, closings will actually do more harm than good. Homes would 

become incubation chambers for the contagion, intensified as fewer locations are available.   

5.21.2 Inoculation vs. Size of Attack 

The options available to the attacker can vary considerably.  They essentially have the option 

to attack any members of the population as they see fit, resulting in essentially up to 6.4 x 

1016 choices if only three people are infected. To avoid the temptation to explore every 

possible scenario, we assume that the attacker will only consider a handful of potential 

targets.  Experimenting with the possible targets, we discovered that the attack vector impact 
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does not always scale directly.  Consider vectors 3-3, 3-6, and 3-9.  Each attack progressively 

includes the smaller targets plus three additional people.  A traditional consideration of the 

scenario suggests that an increase in the number of victims would directly result in a much 

larger infection.   

 

Figure 5.2.  The infection graph of 3 different attacks of varying size on location 3. 
 

While attack vector 3-6 was a significant step forward from 3-3, the distinction between 3-6 

and 3-9 was much smaller.  According to the original SIR model, the number of infected 

individuals essentially results in a proportional probability that any susceptible node in the 

network will be infected.  On Day 15, the first peak in each simulation is indeed higher based 

on how large the initial attack was.  However, as three more weeks pass, the influence that 

the initial targets had over their peers begins to overlap significantly.  Attacks 3-6 and 3-9 

reach their first peak at nearly 1,000 infected people, while 3-3 does not touch that value until 

3 weeks later.  Since the latter attack has a smaller original impact, the recovery rate insures 

that the total number of infected individuals never rises above 1,531.  The day on which the 

peaks occurred also demonstrated the complexity of the underlying network.  Even as the 

closing dates are varied instead, the characteristics between the vectors remain similar.   
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5.21.3 Infection Rate Variance 

Another gap in our understanding of biological warfare is the estimation of the baseline 

infection rate.  This rate essentially yields a simple probability representing the complexities 

of the human immune system and the impact of external influences.  Typically, this varies 

based on a number of factors such as health, age, and personal hygiene. We did not account 

for potentially variant infection rates in chapter 4, as we used a constant instead.  We varied 

the infection rate over 70%, 80%, and 90% in order to analyze whether or not the methods 

considered scale well. 

The infection rate of 70% serves as our standard baseline for our work. Looking at an 

inoculation percentage of 12.5% and attack vector 1-9, we saw a remarkable difference in the 

results as it was varied.  At 80%, the number of afflicted individuals rose by 5,005, while 

90% saw over 4 times that amount at a delta of 22,754. In both cases, there was an additional 

‘aftershock’ of infections. While a 70% infection rate saw a subsidence around the 3 month 

mark, the 80% rate saw an additional swell on day 65 that peaked on day 100.  This resulted 

in a significantly higher secondary ‘swell’ of sick individuals. 
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Figure 5.3.  Attack Vector 1-9 on a variety of infection rates. 
 

Analysis suggests that a higher infection rate allows a contagion to have a more pronounced 

movement through a system, creating the ‘aftershock’ when prior individuals that only had 

moderate chance of infection before the recovery rate eliminated the growth instead saw a 

reemergence of the threat as other parts of the network began to reach individual infection 

rate peaks.  In other words, the disease is simply not eliminated from the population fast 

enough, allowing it to leverage more distant parts of a social network before returning to 

infect the remaining susceptible ‘core’ majority. 

5.21.4 Social Distribution Impact 

The impact of the complexity of a social network becomes particularly apparent in the midst 

of random inoculations. Looking at the 1-9 attack vector over the course of inoculations, an 

initial glance suggests only subtle variations over time.  Figure 5.4 demonstrates that the 

inoculation method maintains an increasing effectiveness when all facilities are closed on day 

3.   
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Figure 5.4.  The influence of inoculation sizes on the results of attack vector 1-9. 

 
 

Conversely, if the relative delta of each change is looked at instead, we see a very different 

set of patterns emerge.  When no inoculation occurs, there are 4 distinct epochs as which the 

spread of the contagion peaks. This occurs at days 12, 22, 30, and 72, the maximum of all on 

day 30 at a delta of 5.81%.  The first epoch is roughly the same for all inoculations, with 

predictable variance in the time and intensity as a function of the inoculation size.  However, 

the intensities of the 2nd and 3rd epochs share almost identical values.  

When a quarter of the population is inoculated, a different trend emerges. The infection in 

this situation appears to go through at least 5 discernable peaks, the maximum of which is 

4.75% on day 28.  This is a 27.8% reduction in the delta, but it occurs on the same day.   

When we compare this with 2-9 attack vector, show in figure 5.5, a similar phenomenon 

occurs but with varied characteristics.  The two initial peaks which emerged under no 

inoculations remain the same distance apart but now vary in terms of the maximum in a 

difference of 0.034%.  However, the overall intensity of the same infection rate appears to 

have been lessened, with a final peak at 0.249% rather than 0.288%, suggesting that the 2-9 
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attack does not reach as many nodes as quickly as the 3-9.  The results for higher levels of 

inoculation appear to follow suit, though the time period has shifted for most peaks.   

 

Figure 5.5.  The influence of inoculation sizes on the results of attack vector 2-9. 
 

5.22 Simplicity within the Outcome 

As the complexity of the associations of our social network increased and the degree of 

separation between any two nodes decreased, we found occasions in which our model began 

to resemble the simpler SIR model more closely.  We believe that locations in which either 

the social connections held by a single individual are high enough or the amount of contact 

between individuals is high, the need for complex models begins to decrease.  Consider for 

example a dense population area such as New York City.  The vast majority of the residents 

are unable to avoid the need to walk at least some distance through the city to reach a desired 

destination.  During this walk, the number of people that are contacted directly or indirectly 

can range between ten to hundreds.  Given this fact, the infection rate between individuals 

begins to become much more uniform.  Coupled with a lifestyle that favors crowds, the SIR 

model may actually be a better choice for some scenarios.  
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The impact of closing all facilities, while moderately effective, did not fare as well as closing 

all but recreational theatres.  This appeared to be due to the choice of a lower infection rate 

for recreational theatres, which in turn is due in part to the nature of what can contribute to 

the susceptibility of an individual based on their mental state of health.  Studies have shown 

that stress can increase the susceptibility of a person to viral infections by as much as 70% to 

95%. [51] Other reports indicate a positive mood can actually boost the body’s natural 

defenses against maladies such as the common cold. [52] [20] [53] Essentially, positive 

social activities have been proven to reinforce the immune system, which actually suggests 

that our recreational areas are accurately depicted in our models.  However, some social 

activities such as those that involve alcohol consumption may actually have a negative 

impact. [49] Additionally, the societal norms that dictate what is acceptable for a 

government’s involvement may indicate that a government mandated closing of social 

theatres is a violation of human rights, resulting in unhappy citizens that may pose other 

threats to society as a whole.  In short, the closing of recreational areas is most likely going to 

have a negative rather than positive impact on the safety of a population.   

In the previous chapter, we discussed that shutting down businesses, even in the interest of 

protection, could have a largely detrimental effect on the local economy.  Instead, a more 

effective approach would instead be to concentrate the remaining methods on different social 

theatre participants.  In several countries, schools are publicly funded and controlled in part 

or wholly by the state; they could easily be closed with little immediate effort.  Meanwhile, 

inoculations could be carried out at all places of work. However, as effective as this 

combination may be, mixing the methods raises an interesting question in terms of public 

safety and moral perceptions.  There is a distinct possibility that, despite the best intentions 
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of the state, the public may interpret the inoculations of only those who attend business 

theatres as a form of elitism, as it would exclude those unemployed or whom work for 

themselves.  Any benefit from enacting such a policy could be substantially offset by a 

population that may already be afraid due to the nature of the threat; the consequences could 

range from mild civil dissatisfaction to riots and non-compliance with future orders.  This 

depends primarily on the nature of the state, the general status quo, and the shared beliefs of 

the population.   

After our modifications to the model, we still consider the performance of our experiments 

an important factor in our success.  The speed of the simulation varied based on how many 

social theatres were currently still available.  Our test system was an AMD Phenom X4 

running each core at 2.4GHz with 2GB of RAM.  Each simulation ran on a single core and 

occupied approximately 420MB of RAM. On average, a complete day took approximately 

1.1 seconds to run on a population of 400,000.  Within a single real day, we can simulate 

over 7 years on just four cores.  Given that the average scenario takes 120 days, we can run 

through over 650 scenarios in the same time period.  This provides room for a governing 

body to consider a myriad of possibilities or consider scenarios in which all of the data is not 

known.   

The experiments suggest that the spread of a contagion through a varied social network can 

offer misleading results when analyzed with regard to the trends of information.  A 

traditional SIR model has a predictable peak, emerging gradually.  Introducing noise into this 

trend does not significantly affect the characteristics of the observed trend if an average is 

taken.  However, our model demonstrates that even a low probability of the spread of 

infection can lead to significantly different and potentially misleading information. Consider 
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the first epoch in the comparison between attack vectors with respect to recovery.  It at first 

appears that, within the first two weeks, the infection has subsided and resources can be 

withdrawn.  However, as the following week unfolds, the number of infections rose 

dramatically as latent infections arose in the individuals they had contact with.  The results of 

our model suggest that the small world phenomenon may be able to predict the number of 

‘peaks’ that are observed in the data.  For example, assume that there is an average of 4 hops 

between any two members of a social network.  Assuming 100% probability of passing an 

infection, a biological attack would likely spread in 4 days or less to virtually every member.  

This is a trivial observation.  However, if we reduce the probability dramatically and 

introduce multiple possible vectors over which the infection can spread, the overall system 

will likely see swells in infections spread out over a period of days.   

Multiple peaks within infection rates are not new to epidemiology [47], but it has so far been 

apparently overlooked in the realm of biological attacks.  Traditionally, multiple peaks occur 

due to the nature of smaller populations and the latency between infection and discovery.  

However, we have observed that even an epidemic that unfolds rapidly may encounter 

sufficient resistance within the traversal of large-scale social networks, resulting in infections 

swelling at different points in time.  This poses a grave threat to a country that wishes to 

withdraw intervention methods in order to resume normal operations, as they may actually 

encounter an additional serious climb in infection rates as much as a month after the 

epidemic has subsided.  This dictates that proper understanding of an epidemic requires at 

least a rudimentary sketch of a social network to allow for delays in the propagation of 

infection across multiple vectors.  The only exception to this would be an epidemic that 

spreads via an airborne delivery system rapidly without the need for close proximity.   
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In short, one of the most common features of our results is that the nature of social 

networking, the ways in which individuals associate, and the factors involved can all lead to 

a variety of scenarios with a myriad of challenges. This further reinforces the need for 

accurate models that can accommodate these factors properly with the most accurate data 

available.  Otherwise, simulation results from simpler models may yield inaccurate 

information that could lead to deadly results in light of an actual attack. 
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CHAPTER 6 

APPLYING GAME THEORY TO EPIDEMIOLOGY MODELS 

6.23 The Motivation of Tragedy 

In the wake of the frequently tragic aftermath of an act terrorism, one of the first questions 

much of the afflicted population will ask is, “Why”.  Namely, it is puzzling for many as to 

what would motivate an individual or group to resort to acts of terrorism carried out on a 

civilian. [54] This is clearly a difficult question to answer, one that is rife with considerations 

of ideologies, the value of human life, and what constitutes acceptable behavior in light of 

what are often radical beliefs.  Such an answer is vital to understand not only the cause of an 

existing attack, but what would motivate attempts in the future in the hopes of preventing 

other attacks.   

Securing a population against a bioterrorism attack is clearly an important goal. However, 

realistically, an interest in protecting the population and what is actually feasible with 

available resources often do not coincide.  We assume that our hypothetical country wishes 

to minimize, if not eliminate, the potential casualty rate due to an attack.  As precious as 

human life is in the eyes of many, the challenge of limited resources must be weighed 

considerably in light of future obstacles that may or may not be terrorism related.  The goal 

of our work is to answer a considerably difficult question which is naturally derived from 

these constraints: Is it possible to maximize the use of existing resources to minimize the 

impact of a biological attack in the worst-case scenario?   
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Assuming that the goal of a terrorist organization is to maximize casualties, and the goal of 

the local government of the targets is to minimize them, it becomes possible to realize the 

scenario as a perilous challenge between two opponents.  Game theory is an approach to 

strategy and mathematics that is rooted on the assumption that two or more rational players 

wish to maximize their overall utility in light of their opponents’ choices. [55] Such an 

approached served well in the information sharing phase.  Thus, we continue the use of this 

model by realizing this scenario as a game played between the attacker and the defender. 

Consider the nature of public governments.  In many countries, one of the responsibilities of 

a governing body is to be accountable for its’ actions to the people it oversees.  In this 

situation, any move made to protect the population will be highly visible to the public.  For 

example, in December of 2001 the state of Texas held a forum on biological preparedness 

that outlines local government responses to a potential attack.  The information is available 

for public viewing due to the transparent nature of the state government. [56] Mass 

inoculations would be difficult to hide either as a mandatory or optional course of action for 

individuals.  Any training for preparedness would be hard to keep secret if local 

governmental agencies such as regional police stations and fire departments are involved.  In 

short, the actions taken by a governing body in defense of the population are difficult to keep 

a secret; thus, we make the assumption that any defensive measures are going to be known 

well in advance by malicious organizations. 

The actions taken by the same organizations are often much more difficult to observe.  Since 

several terrorist groups operate in loosely coupled cells [57], ascertaining their moves 

requires serious investments in research and intelligence.  How far in advance an action can 

be anticipated cannot be relied upon.  In a conference held by the OECD on the 22nd of 
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November in 2004, analysis of the nature of risk assessment and insurance with regards to 

terrorism revealed that insurers were concerned due to the lack of recent history of terrorism 

and the unpredictable nature of how, when, and where an attack would be carried out. [58]  

Indeed, the concern is so high that the Terrorism Risk and Insurance Analysis act of 2002, 

specifically designed to protect insurers in light of catastrophic terrorism events, was 

originally set to expire in December of 2005.  Due to continued concerns regarding trends in 

terrorism and the lack of data available to insurance companies, the act was extended twice, 

and now remains valid through December of 2014. [59]  We thus must assume that, as a 

player, the attacker’s actions will not be known until after they have been committed.  

A Stackelberg game is one in which two players, a leader and a follower, attempt to 

maximize their own utility in light of disparate knowledge.  The leader goes first, choosing a 

strategy first from available options.  The second player, the follower, then picks their own 

strategy with perfect knowledge of what the leader has chosen.  The leader, however, does 

not know any more than the available strategies to the follower, and as such, must attempt to 

make a decision that maximizes their own utility in light of what the follower wants. 

 

�

(6.1) 
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Thus, the leader must choose the most profitable strategy a1 while understanding the follower 

will choose their own a2. The strategies available to either player are determined by our 

experiments via the choice function C which, given a particular parameter, generates the 

strategies available.  The defender must choose from a set of strategies A1 which contain the 

number of random inoculations, what type of intervention will be administered, and what 

type of closings will be performed when.  The attacker’s strategy set A2 is composed of what 

to attack and how large of an attack to carry out.   

The utility function for the defender u1 determines how the outcome of the simulated 

epidemic will be perceived.  The simplest approach to this would be counting the number of 

casualties that result.  However, the function can also be based on real world data, providing 

an estimated currency-driven value on which to consider both the investment needed for the 

defensive choices made as well as the casualty count.  We describe this in more detail later in 

the chapter.  An attacker’s utility u2 was difficult to determine, as our research did not 

uncover reliable statistics on the costs to a terrorist organization.  We will instead use the 

number of people infected during the attack.  
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Gauging the results of choices in a game remains one of the most crucial tenants of a realistic 

scenario.  We use the utility functions u1 and u2 to determine what that outcome may entail. 

If the attacker wishes measure results based on the total number of infected individuals, then 

the function is simply defined according to (6.2), where G represents all individuals in the 

game, k represents the player using it, and t represents the time at which the game has ended.  

Ri at t=0 represents people who were originally inoculated.  Since this area is subject to 

speculation and often strays to philosophy during debates on the topic, we will focus our 

concerns on what can be measured with available data. Note that the defender would use the 

negated function , as they wish to minimize the number of casualties. 

When the defender wishes to consider numerical cost, we use the  function instead.  First 

we assign a daily cost Ch that determines the perceived impact of each sick individual.  This 

is multiplied by the number of infected people per day and added up to the end of the 

simulation on day n. Next, we multiply the cost of each vaccine Ci by the number of people 

vaccinated.  This is followed by the cost of the facilities function cf  which takes the choice 

made by player 1 to add the initial inoculation overhead based on whether or not any 

(6.2) 

(6.3) 
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inoculations were made. Following this is the intervention method cost function cv that yields 

the impact of the choice made as well on where to put funds for hospitals, public service 

announcements, etc. Finally, we have the cost of closings determined by the function cl, 

using the same data to determine the economic impact of the social theatres.  Note that this 

function must calculate how many business employees are affected by the closings, if any.  

Should the attacker wish to determine their benefit based on the cost incurred to the defender, 

they would use for their own utilization function.  The detail of these costs and 

cost functions are described later in section 6.2.6. 

Gauging the results of choices in a game remains one of the most crucial tenants of a realistic 

scenario.  Considerations in this game include a number of options and consequences, 

ranging from whom to inoculate against a suspected biological agent and determining the 

loss of human life in light of who is saved.  Since this area is subject to speculation and often 

strays to philosophy during debates on the topic, we will focus our concerns primarily on the 

financial impact of an attack amidst varying considerations of cost to both players.  

Ideally, we wish to find a defense strategy that provides a reasonable and theoretically 

guaranteed upper bound to the impact of an actual attack.  This suggests that we should seek 

a dominant strategy within our game, which in this instance is simply a strategy choice made 

by the leader that minimizes the maximum damage done by the follower’s moves. [60]  Since 

there are so many factors involved, it is possible that we may find several equilibrium 

spanning different scenarios, or perhaps no equilibrium exists at all.  Regardless, there is a 

clear benefit to these conclusions in light of a tangible biological threat.  



103 

 

6.24 The Culmination of Ideas 

6.24.1 Creating the Defending Population 

We varied slightly from our previous experimental hyper-matrix of options with a different 

setup.  Our hypothetical target is a city with a population of 400,000.  Within this population, 

250,000 individuals are employed.  The average family has 4 members.  80,000 members of 

the community attend some form of educational institution.  For all theatres except homes, a 

detailed social network is overlaid using the parameters provided in our prior work creating 

the effect of relationships and the impact they have to the probability of transmission.   

The virtual day is divided into three 8-hour time periods.  The first period is considered the 

work period; the population is either at work, attending an educational institution, or residing 

at home.  The second period of time is the recreational time period, where people are relaxing 

at home or at a recreational theatre.  Finally, there is the rest period, where all individuals are 

assumed to be at home.  A total of 120 days, representing roughly 4 months, are simulated.   

Infection rates at each location are assumed to vary due to the nature of activity.  Educational 

theatres carry the highest infection rate, as they frequently require several individuals to be 

confined in the same room to attend class, lectures, etc. for an extended duration of time.  

Work theatres are second, as they have less personal contact and relative proximity but often 

see an increase in infection rates due to stress, as discussed in the previous chapter.  Homes 

are more confined spaces but have the potential to be a relaxing environment. Finally, 

recreational areas have the lowest infection rate, as they are often less confining and are 

assumed to bolster immunity due to the recreational nature of activities.   
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6.24.2 The Nature of Biological Attacks 

Any citizen of this city represents a possible target.  However, taking into consideration all 

possible targets of a hypothetical attack on just three people means there are a considerably 

high number of possibilities.  Instead we will assume the attacker is politically motivated and 

3 possible targets.  Within these targets, the attacker can commit resources to infect 3, 6, or 9 

people, yielding a total number of 9 attack vectors. Obviously, if we knew which targets were 

in question, we could simply discretely inoculate them.  Instead, we will assume for the sake 

of relevant data that this cannot be done. 

The base probability of infection is set at a probability of 80% based on a study of existing 

data. [64]  Recovery will be set to 10%, based on the same data set which suggests most 

people will have infected others within a lower bound of 10 days after the onset of the first 

symptomatic period.  After this point, we assume they have either passed away or have been 

quarantined because of visible symptoms.   

6.24.3 Intervention Options 

We will assume that the city governing entity wishes to consider options of intervention.  

There are three levels at which they can alter the infection and recovery rates:  5% and 10%.  

In the case of infection, this would be a reduction, while recovery would be bolstered.  This 

is done through means such as promoting public awareness, civil servant preparation, and 

allocating funds to medical facilities.  It is assume that a governing body will choose at least 

one of these rates to be altered in order to stem the tide of the infection.  
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6.24.4 Inoculation Considerations 

An obvious course of action is to use a vaccine to inoculate members of the population.  We 

will assume that this is carried out by some branch of the government at a cost both for initial 

investment and the vaccine per person.  Possible values considered are no inoculations, 

12.5% of the population, 25% of the population, and 50% of the population.  Clearly, 100% 

would be the most effective, but we will assume that for reasons beyond control only 

200,000 doses of the vaccine in question are available and the city cannot control who will 

receive it. Note that any individual who is inoculated is considered completely immune to the 

contagion.   

6.24.5 Closing Social Theatres 

We introduced the concept of closings and their impact on stopping infections in chapter 4.  

Several options are available to the governing entity.  Assuming that the infection was known 

of either through detection or announcement, the city can close theatres within one to four 

days after the attack.  Since there is no real data available on this method, the cost of a 

closing will be based instead on the indirect effects on the local economy, such as the loss of 

income taxes when employees do not earn a paycheck.  Facility closing options include just 

schools, schools and workplaces, all theatres, and none.   

6.24.6 Evaluating Cost of Life 

Evaluating the results of an epidemic is a considerably difficult task.  One must weigh the 

value of human life in relation to the cost of preventing the loss of it as well as ensuring the 

quality thereof.  Dealing with an epidemic is no small task for the authority responsible for 

the safety of the victims, and there must also be considerations that span the whole of the 
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body at risk.  An epidemic in Houston for example can threaten the population of the entire 

United States.  Obviously, this question is subject to a number of schools of science, 

philosophy, and political ideologies.  However, for the sake of evaluating the results of our 

simulation, we will assign costs to the actions to the best of our ability within the realm of 

practical science and existing techniques. Since the factors that determine these costs can 

vary widely across the globe, we will confine our hypothetical simulation to biological 

attacks within the borders of the United States and consider loss in terms of US Dollars.   

Additionally, since the results of an epidemic are dependent upon the biological agent used, 

we must assume the use of a single infectious disease.  Despite the influence that concerns 

about Anthrax have had on the increased research in bioterrorism, understandings of the 

bacteria have shown that it is difficult to spread quickly beyond the initial attack.  This is due 

to the fact that it requires the direct inhalation of the spores, the distinct symptoms manifest 

quickly, and it is only transmissible through direct intentional contact or zoological vectors.  

The severe acute respiratory syndrome coronavirus (SARS) has been suggested during an 

outbreak in China during 2003 as a possible agent that was the intentional result of biological 

warfare research, but the highest observed infection rate was less than 7% and the mortality 

rate was relatively low. [65]   

We instead chose Smallpox.  Efforts in the 1970’s worldwide resulted in the near elimination 

of the virus. In light of recent concerns, the Center for Disease Control considers the virus as 

a class A threat.  There is a relatively long incubation period for the virus, during which time 

the affected individual is neither contagious nor tends to feel any symptoms.  After that time, 

the person usually becomes contagious and begins to experience the early symptoms.  

Depending on which type of smallpox is involved, death rates can be as high as 50%. [66]  
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Additionally, the appropriate strain can be distinct enough that prior inoculations during the 

1970’s would not be effective.  We will however assume that a vaccine is available, for the 

sake of analysis. 

The first and most pressing issue is the cost of fighting infections.  Although one could argue 

that it is invaluable, several governmental agencies within the US have assigned a specific 

dollar value to a single human life based on a number of factors which primarily revolve 

around not on earning capacity, but rather willingness by an individual in peril to expend 

resources to avoid death.  We will be using the Environmental Protection Agency’s rating of 

$6.1 million US Dollars adjusted via GDP deflation from 1999 to 2008. [67]  This cost will 

be applied to each projected death as a result of an infection.  For those that are rendered 

unable to work due to infection, we will apply that amount averaged over the 2007 life 

expectancy of 77.8 years. [68] This comes out to roughly $214.81 as the daily ‘willingness to 

pay’ to extend an individual’s life.  Although it seems logical, we will assume that human life 

is invaluable enough to avoid consideration the EPA’s number as a cost in the event of an 

actual death.   

The next cost to consider is the impact of inoculations.  First, the handing out of inoculations 

will require an initial amount of resources in terms of staff.  We assume for the sake of 

simplicity that a staff of 20 registered nurses has been assigned and that they can each 

inoculate a single individual in a minimum of 2.4 minutes.  This is a preventative measure 

taking place well in advance of the attack itself, so normal hours can be assumed, meaning 

that they are working 8 hour shifts and inoculating at most 200 people apiece per day.  

Assuming the average accounts for travel time, the entire city could be inoculated at this rate 

in approximately 120 days. As of the writing of this document, the average registered nurse 
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receives $25.80 US Dollars per hour [69] which puts the total cost of staff alone at $24,768 if 

we employ them on a simple four-month contract regardless of the number of inoculations 

during that time.  The actual cost of each inoculation on top of this is difficult to calculate, as 

while the vaccine itself can be relatively cheap, the infrastructure that goes into its’ 

production can be attributed to the final price.  In 2002, the United States Department of 

Health and Human services awarded a $428 million dollar contract to produce 155 million 

doses of a smallpox vaccine by the end of 2002. [70]  Assuming that deal went through and 

no additional costs were incurred, each dose is worth $2.76.  The final cost of inoculations 

then comes out to the base cost of the nurses plus the expense of each inoculation.  

Dealing with closings presents an additional challenge.  If schools are publicly owned, 

closing them will have no immediate perceivable financial impact.  We recognize this is a 

simplification, as the continuing education of the populace is certainly a high priority.  

However, the concerns of many governing bodies will likely be focused on immediate 

tangible economic drawbacks.  In 2007, the population of the United States was 302 million 

[71] with an unemployment rate of 4.6%, resulting in a total of 288 million employees 

nationwide according to the CIA World Factbook. [72] The IRS reported gross tax income of 

$1,245 billion due to corporation and employment taxes in 2007. [73] In the same year, $319 

billion in state taxes were collected via income taxes. [74]  Assuming that businesses would 

suspend operations in light of being shutdown and no longer contributed during that time to 

any of those situations, this equates to a cost via loss of $14.88 US Dollars per day per 

person.  Although it would also likely have impact, we will assume that recreational theatres 

have only negligible impacts and will not be considered at cost. 



109 

 

The final cost to consider is altering the course of the epidemic via public service 

announcements and funding to medical facilities.  We will assume that a public service 

announcement costs nothing in the time of an emergency but it must be coupled with hospital 

funding to be effective.  There are two ratios that are being modified: infection and recovery.  

We will assume that initial 5% of modification in either category individually will be half the 

cost necessary to reduce or increase it an additional 5%.  In a study of hospital budgets, it 

was found that the average cost of a patient in normal levels of care is $1,121.59.  We will 

assume that some fraction of this is necessary to increase in order to allow the hospital to 

bring in additional resources such as doctors and medicine, and as such 5% of this amount 

will be necessary for the first 5% of each rate.  Thus, increasing the effectiveness of 

treatments per patient would be $56.08 to either increase recovery rates by 5% or decrease 

infection rates by 5%.  To bring either to 10%, an additional $112.16 per patient would be 

necessary. This dictates how much each infected individual will cost the governing entity per 

day. For example, if a 10% reduction in the infection rate was desired with a 5% increase in 

recovery, it would cost $224.32 per person.  This will be applied to all infected individuals 

whether they are within a hospital or otherwise. 

6.24.7 Cost of the Attacks to the Attacker 

There is no existing work that we have found which suggests the costs a terrorist 

organization would incur to carry out a biological attack.  The lack of data would render any 

guess financially useless in comparison to the costs incurred by the city.  As such, we will 

consider their results strictly in terms of the size of the attack and the resulting number of 

casualties, under the assumption that the cost is linear for the number of people infected.  



110 

 

6.24.8 Goals of our Pursuits 

The objective our experiments are to consider a number of issues in light of an epidemic.  

First, we wish to consider an unbounded approach in which cost is not a factor and the 

objective is simply to provide a game-theoretical equilibrium in the form of an upper bound 

on the expected casualty rate in relation to all possible attacks.  Second, we wish to consider 

the benefits of how many individuals are not infected vs. the cost to insure their health.  

Essentially, we will gauge the most cost effective approach that yields the greatest protection 

of the population per dollar spent. Finally, there is the issue of budget limitations on the 

governing body.  All options will be considered in light of various levels of budgets.  This is 

distinct from cost-benefit analysis as life is considered invaluable, but the resources are 

limited.  

6.25 The Outcome of the Experiments 

6.25.1 Casualties Only 

Amidst all defensive choices, the lowest possible number of infections regardless of a change 

in attack vectors was a combination of 200,000 inoculations, closing of schools on day 1, 

+10% boost to recovery rates and -10% to infection rates on attack vector 2-9, with 29 

infections.  This was followed by the same setup with the exception of schools closed on day 

2 and day 4, yielding 30 and 31 infections respectively.  The nature of the social network in 

our experiment creates situations in which effects can be linearly effective but non-linearly 

dominant due to the chaotic nature of the system.  A look at the day 3 closing shows that it 

actually had the same number of infections as a day 1 closing but if the enemy switches to 

attack vector 3-9 they can actually increase the number of casualties to 39, a 34% increase.   
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Looking at the change of infection upper bounds, we find that a few interesting situations 

arise.  First, we note that at the 29th lowest upper bound there is a serious spike in the change 

from the prior scenario.  This indicated the boundary between where the options were strictly 

200,000 inoculations.  However, starting at the 33rd place and moving onwards, the entries 

are not strictly ordered by inoculation.  At the 61st entry, we find the first scenario where no 

inoculations occurred, resulting in a lower bound of 5,197 infections.  

 

Figure 6.1.  The increase in infections over a ranked list of upper-bounded scenarios. 
 
 

If closings are not an option, the nature of the best possible choices changes only slightly.  

The lowest possible equilibrium in this instance is 35 infections amidst 200,000 inoculations 

with a recovery rate of +10% and an infection rate of -5% on attack vector 1-9.  The next best 

scenarios are attack vector 3-9 with a maximal intervention rate yielding an upper bound of 

38 and the same infection rate modification but only +5% to the recovery yielding 57 

infected individuals.  The rest of the equilibriums were ordered properly according to the 

inoculation count.  However, the altercations to the infection and recovery rates varied on 

which one them were the upper boundary.    
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When vaccines are not available, the focus shifts to closing as many facilities as reasonably 

possible as the primary motivation.  We added closing all facilities to our matrix of 

possibilities in this situation.  The best scenario here is everything is closed on day 1 and 

recovery is bolstered to 10% with infection is minimally affected, yielding 5,198 infections 

total.  When everything cannot be closed, the next best option becomes of course work and 

schools closed on day 1 with maximum intervention but resulting in 41,593 reported cases.  

School or no closings alone are not even considered until the first two approaches have been 

exhausted.   

6.25.2 Cost Effective Defense 

When costs are introduced, and equilibriums are based on the number of deaths achieved, the 

nature of the ideal situation changes.  The cheapest scenario has a total of 35 infections and a 

cost of $624,062, with half of the city inoculated, an attack via vector 1-9, a recovery 

adjustment of +10% but an infection adjustment of only -5% and no closings at all.  The next 

ideal scenario has the same inoculation count but an attack on vector 2-9 with schools closed 

on day 1 and maximum adjustments to infection and maximum intervention policies, at a 

cost of $625,284 but an infection count of only 35. Serious price increases arrive on the 

ranked list of scenarios when 100,000 inoculations are performed, as the infection count here 

enters the quadruple digits at 6188 and the cost skyrockets to $8,897,963.  When businesses 

are considered, the best business closing scenario sees an increase of $321 million compared 

to the ‘worse’ non-work-closing scenario starting at a rank of 81st. From that point on, all 

options consider businesses closed.  

Hypothetically, assume that the cost of the vaccine has now gone up due to concerns 

that other cities have over the same type of attack.  Instead of a wholesale price of $2.76, the 
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price is increased by a factor of 10 to $27.60 because of demand.  No change is found to be 

in the order of the list of options by cost; however, the cheapest option is now nearly $5.6 

million.  If cost of the vaccine increases by an additional factor of ten, inoculating 50% of the 

city is now considered too expensive when compared the benefits of only 25%.  The 

minimum amount necessary to seriously consider a 25% inoculation is $85.50 per dose.  

When no vaccine is available at all, the cheapest option becomes closing schools on day 3 

with minimal infection and recovery rate modifications, which has equilibrium at attack 

vector 3-9 with a staggering total of 73,718 infections.   

6.25.3 Budgeted Defense 

Judging an effective economic approach on limited funding can be particularly difficult.  

Regardless of how it is viewed, human life must be valued at a finite price in order to 

maximize the existing resources.  We apply the cost incurred during the course of fighting 

the epidemic in regards to the number of individuals who do not become infected.  This 

individual value essentially becomes the price of health.  Applying this concept to our data, 

we find that the most cost-effective upper bound is through inoculation of half the city with 

no closings, a 10% boost to recovery and only a 5% discount to infection with the most 

effective attack being vector 1-9.  This scenario only required $1.56 for every healthy 

individual.  If no inoculations were available, the lowest price jumps to $236.98 per health 

individual, under attack vector 3-9, schools alone being closed on day 3, and minimal 

intervention.  
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Figure 6.2.  Logarithmic x-axis graph of the number of infections vs. the cost per healthy 
individual 

 
 

Analysis of health costs and the resulting infections show an interesting trend.  Price points 

for health begin at under two dollars.  However, the cost continues to increase as the money 

invested cannot match pace with the yield.  Some of the lowest infection counts can be as 

high as possible due to the nature of the techniques.  In this case, several of the defensive 

techniques that resulted in under 100 infections were due to closing all social theatres in light 

of the threat.   

Consider terrorists that must linearly scale up their efforts for the larger attack sizes per 

vector.  For example, infecting 3 people at target 1 requires half as many resources as 

infecting 6 people.  As stated previously, it is difficult to assign a value in the mindset of the 

terrorist.  However, by simply dividing the number of individuals affected by the size of the 

attack, the costs are appropriately weighted.  Generally speaking, this approach tends to 

result in fewer infections.  The lowest equilibrium in the list is 12 infections with half of the 

population inoculated, full intervention methods, and schools closed on day 1 with attack 
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vector 2-3.  When the list is resorted in terms of cost to the city, the first 7 top choices remain 

the same; however, 7th place shifts from 22  infections on the same recovery and attack 

vector but only +5% to recovery rates to 23 infections with a recovery of +10% and the 

infection rate now at -5%.  If the same shift in cost evaluation is applied to the group’s desire 

to inflict the highest amount of economic damage for their investment, the impact of their 

attack becomes even lower, with attack vector 1-3 yielding only 3 infections in an ideal setup 

of 50% inoculations, everything closed on day 1, and all but the infection rate at maximum 

intervention levels.   

Overall, we found that the viability of options available to a defending country can be heavily 

dependent on the local economy.  For many cities in relatively rich countries, these costs may 

seem to be a small price to pay for the safety of the citizens present.  However, those which 

live in countries that lack available resources may find that sacrifices are an inevitable part of 

the situation.  Additionally, if the cost of certain methods rise considerably, no city may be 

safe from the impact of a particularly virulent weapon.  In the end, all options must be 

considered in light of the greater good to society.  This said, with careful planning and the 

justification such a model as ours offers, it becomes possible to anticipate and ensure that the 

necessary resources are in place long before a real attack may occur.   
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CHAPTER 7 

CONCLUSIONS 

Our work on surveillance techniques demonstrated that automated data analysis remains a 

difficult problem.  Replicating the ability of the human mind to process and correlate data is 

a complex task.  Clearly, a country wishing to gather intelligence must rely even more on the 

resources available to human agents and the benefits of information sharing.  The continuing 

flood of data as technology advances will undoubtedly pose a growing challenge to the world 

of data mining for security.   

Our simulations of data sharing and cooperation have shown that it is indeed possible to 

achieve a situation in which peers successfully ensure the ideal choice of strategy by all 

participants.  However, just as in many societies today, there is a continual need for a few to 

sacrifice their own gains to ensure the rest of the alliance will benefit.  Finding ways in which 

peers can reward each other for adopting this behavior is crucial to ensuring an equilibrium 

can exist in the real world.  However, if those that make this sacrifice are not properly valued 

and rewarded for their efforts, it is difficult to ascertain how long an ideal situation would 

last.   

Throughout all experiments, it became clear that inoculations are a highly-effective and 

relatively low-cost way of fighting a biological attack.  However, an actual attack would 

likely run the risk of alarming more than just one city.  Unless the governing body has the 

power to fix the cost of the vaccine, there is a high probability that a free market will 

continue to drive up prices as not only governing bodies attempt to protect the population but 
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concerned individuals as well.  Additionally, the inoculation method of protection operates 

under the assumption that there is a warning far enough in advance either directly or through 

intelligence gathering that indicates which contagion will be used.  The truth is, even if this is 

known, a single vaccine may require months to prepare in order to deal with a weaponized or 

exotic strain.   

Additionally, some vaccines carry risks.  The smallpox vaccine alone is recognized by the 

CDC for having potentially life-threatening side effects and in some cases is not 

recommended unless an emergency need arises. [75]  In the event that panic becomes the 

motivating factor for a governing body, mass inoculations further risk those being protected 

when not enough attention is being given to the patient to watch for the side effects.  

According to the CDC report, 1 out of every 1,000 patients administered the smallpox 

vaccine faced serious reactions.  If half of the population in our virtual city was inoculated, 

that suggests that roughly 200 of them may experience these side effects.  In the event that 

the attack does not occur, one may argue that the vaccine itself did more harm than the 

terrorists themselves.  Clearly, vaccinations must be considered carefully before being 

applied to the situation.   

Judging a defensive strategy through a cost-benefit analysis appears initially to be a strictly 

economic maneuver when lives and well-being are at stake.  The value of human life is a 

widely debated topic.  However, it is important to consider that a bioterrorism event may be 

one of several challenges ahead for a governing entity to consider.  Funding is limited 

regardless of how much is made, and assigning every resource to deal with a single event can 

be potentially hazardous should a future one arrive.  This considered, recent history has 

shown that the power of epidemics should never be underestimated.  With some diseases, 
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failure to act may very well result in a pandemic that would either leave little only a fraction 

of the city’s inhabitants alive or take a considerable toll on the rest of the world.   

The intervention techniques of modifying the infection and recovery rates seemed to be too 

small to be of use.  Although they did have an impact, it appears that they were regularly 

‘drowned’ in the mathematical sense within precision errors and the rest of the factors 

involved.  In essence, whenever the simulation appeared to have a relatively small number of 

infections due to other methods, the cost-benefit of using such low levels of intervention 

were negligible at best.  It is our belief from analysis of these actions in our simulation that 

suggests that this technique does not stack well with others despite being mathematically 

compatible.  

One of the most important aspects of this simulation’s relevance is the availability of real-

world data to simulate a given city.  Traditional census data can be used to provide detailed 

snapshots of how individuals spend their time over the course of a day at the various social 

theatres.  Family sizes and population distribution can be used to construct home social 

theatres.  School enrollment records, public service records, and employment information can 

all be combined in such a way to represent an entire social network within the model itself.  

The end result is that the model itself can be further enhanced with readily accessible public 

information that is traditionally available at most state or county levels.  Essentially, any city 

of virtually any size can be evaluated in light of this model with an appropriate set of 

computational resources and accurate data. 

A powerful factor that we repeatedly observed in our results in the epidemiology models was 

the small world phenomenon.  The small world effect is when the average number of hops on 

even the largest of networks tends to be very small.  In several cases, the infection spread to 
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enough individuals within 4 days to pose a serious threat that could not be easily contained.  

The results from closing social theatres made this particularly clear, as many closings beyond 

the third day did little to slow the advance of many epidemics.  It is crucial that research 

continues in the areas of epidemic identification, intelligence gathering, and particularly early 

warning systems to ensure that action can be taken within a short period of time.   

It is important to realize that not all intervention methods are available in every country.  It is 

important to understand how local governmental powers, traditions and ethics can impact the 

options available in a simulation.  In some countries, a government may be able to force 

citizens to be vaccinated, while others may have no power at all and must rely on the desire 

for protection to motivate action.  In other situations, closing any social theatre may be an 

explicit power of the state, in contrast to governing entities that may have varying amount of 

abilities to do the same but will not consider it due to a severe social backlash.  The impact 

on society must be carefully considered beyond economical cost in any course of action, and 

there is rarely a clear choice.  These answers are outside the scope of our work.  However, 

our model helps governing bodies consider these efforts carefully in light of public safety and 

the expenditure of available resources.   

The ultimate goal of our research has and continues to be an effort to take advantage of the 

benefits of computer science and provide a means to further pursue a higher level of security 

against malicious activities.  This work is a culmination of years of research into the 

application of social sciences to computer science in the realm of modeling and simulation.   

With detailed demographic data and knowledge of an impending biological attack, this 

model provides the means to both anticipate the impact on a population and potentially 

prevent a serious epidemic.  An emphasis on cost-benefit analysis of the results could 
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potentially save both lives and resources, both of which can be invested in further refining 

security for a vulnerable population. 

The fight for security has been a long journey for the field of science.  The increasing 

sophistication of would-be attackers continues to grow.  It is unfortunately not inconceivable 

for a biological weapon to be used to advance an ideology or agenda against innocent 

civilians in this age.  There is also little doubt that new threats and forms of attack will 

emerge due to the tenacious nature and ingenuity of mankind.  Therefore, those seeking to 

improve security must never be lax in their pursuits for new means to protect.  It is our hope 

that techniques such as those outlined in our work are never needed to face a real 

bioterrorism threat.  We hope that the future holds a day where such attacks are never 

considered a remote possibility.  However, to quote Nathaniel Brandon, “In a world in which 

the total of human knowledge is doubling about every ten years, our security can rest only on 

our ability to learn.” 

 

 

 



122 

 

 



 

 

 

 

123 

BIBLIOGRAPHY 

 
[1] Ben-Dov, Moty, et al., "Improving Knowledge Discovery by Combining Text-Mining 

and Link-Analysis Techniques." SIAM International Conference on Data Mining. 

[Online] 2004. [Cited: February 8, 2005.] 
http://www.uclic.ucl.ac.uk/paul/research/Moty1.pdf. 

[2] Horrocks, Ian and Patel-Schneider, Peter., "Three Theses of Representation in the 
Semantic Web." 2003. Proceedings of the twelfth international conference on the 
World Wide Web. pp. 39-47. 

[3] Axelrod, Robert., The Evolution of Cooperation. New York : Basic Books, 1985. 

[4] Gupta, Rohit and Somani, A. K., "Game theory as a tool to strategize as well as predict 
nodes’ behavior in peer-to-peer networks." 2005. Proceedings from the 11th 
International Conference on Parallel and Distributed Systems. 

[5] Buragohain, C., Agrawal, D. and Suri, S., "A game theoretic framework for incentives in 
P2P systems." 2003. Proceedings from the Third International Conference on Peer-to-
Peer Computing. 

[6] M. Seredynski, P. Bouvry, M. A. Klopotek., "Modelling the Evolution of Cooperative 
Behavior in Ad Hoc Networks using a Game Based Model." Computation 

Intelligence and Games. 2007, pp. 96-103. 

[7] R.G.Cascella., "The 'Value' of Reputation in Peer-to-Peer Networks." Consumer 

Communications and Networking Conference. 2008, pp. 516-520. 

[8] J.C. Oh, N. Gemelli, R. Wright., "A Rationality-based Modeling for Coalition Support." 
Intelligent Systems. 2004, pp. 172-177. 

[9] Carley, K., et al., "BioWar: scalable agent-based model of bioattacks." Transactions on 

Systems, Man and Cybernetics, Part A. Vol. 6, 2. 

[10] Eubank, Stephen., "Network Based Models of Infectious Disease Spread." Japan 

Journal of Infectious Diseases. 2005, Vol. 6, 58, pp. 9-13. 

[11] Eubank, S., et al., "Modeling disease outbreaks in realistic urban social networks." 
Nature. May 2004, Vol. 429, pp. 180-184. 

[12] Bonnett, J., "High Performance Computing: An Agenda for the Social Sciences and the 
Humanities in Canada." Social Sciences and Humanities Research Council of 



124 

 

Canada. [Online] 2006. 
http://www.sshrc.ca/web/about/publications/computing_final_e.pdf. 

[13] Satuma, J., et al., "Extending the SIR epidemic model." Physica A, 2004, Vol. 336, pp. 
369-375. 

[14] Fuk´s, H., Lawniczak, A. and Duchesne, R., "Effects of population mixing on the spread 
of SIR epidemics." European Physical Journal, 2006, Vol. 50, pp. 209-214. 

[15] Kress, M., "The Effect of Social Mixing Controls on the Spread of Smallpox—A Two-
Level Model." Health Care Management Science, 2005, Vol. 8, pp. 277-289. 

[16] Pequegnat, W., et al., "Conducting Internet-Based HIV/STD Prevention Survey 
Research: Considerations in Design and Evaluation." Aids Behavior, 2007, Vol. 11, 
pp. 505-521. 

[17] Stattenspiel, L. and Herring, D., "Simulating the Effect of Quarantine on the Spread of 
the 1918-19 Flu in Central Canada." Vol. 65, pp. 1-26. 

[18] Ryder, J. J., et al., "Meassuring the transmission dynamics of sexually transmitted 
disease." Proceedings of the National Academy of Sciences in the United States of 
America, 2005, Issue 42, Vol. 102, pp. 15140-15143. 

[19] Stattenspiel, L. and Dietz, K., "A Structured Epidemic Model Incorporating Geographic 
Mobility Among Regions." Mathmatical Biosciences, 1995, Vol. 128, pp. 71-91. 

[20] Bower, B., "Sniffle-Busting Personalities: Positive mood guards against getting colds." 
Science News. 2006, Vol. 170, 25, p. 387. 

[21] Moghadas, S., "Gaining insights into human viral diseases through mathematics." 
European Journal of Epidimiology, 2006, Vol. 21, pp. 337-342. 

[22] Meyers, L. A., "Contact network epidemiology: Bond percolation applied to infectious 
disease prediction and control." Bulletin of the American Mathematical Society, 
2007, Vol. 44, pp. 63-86. 

[23] Patlolla, Padmavathi, et al., "Agent-Based Simulation Tools in Computational 
Epidemiology." Lecture Notes in Computer Science. Heidelberg : Springer Berlin, 
2006, pp. 212-223. 

[24] Cojocaru, M., Bauch, C and Johnston, M., "Dynamics of Vaccination Strategies via 
Projected Dynamical Systems." Bulletin of Mathematical Biology, 2007, Vol. 69, pp. 
1453-1476. 

[25] Banks, D. and Anderson, S., "Game Theory and Risk Analysis in the Context." 
Statistical Methods in Counterterrorism, 2006, pp. 9-22. 



125 

 

[26] Skillicorn, David., Detecting Unusual and Deceptive Communication in Email. Queen's 

University. [Online] [Cited: June 15, 2005.] 
http://www.cs.queensu.ca/TechReports/Reports/2005-498.pdf. 

[27] Layfield, Ryan., "Link Analysis of Social Activity and Suspicious Topic Propagation." 
Presentation at the 2005 South Central Information Security Symposium. 

[28] Han, Jiawei and Kamber, Micheline., Data Mining: Concepts and Techniques. s.l. : 
Morgan Kaufman, 2000. 

[29] Will, Todd., Introduction to Singular Value Decomposition. The University of Wisconsin 

La Crosse. [Online] November 3, 2003. [Cited: February 10, 2005.] 
http://www.uwlax.edu/faculty/will/svd/index.html. 

[30] Internet Usage Statistics – The Big Picture. Miniwatts, Inc. [Online] March 24, 2005. 
[Cited: April 12, 2005.] http://www.internetworldstats.com/stats.htm. 

[31] Global Internet Statistics (by Language). Global Reach. [Online] [Cited: April 12, 
2005.] http://www.glreach.com/globstats/. 

[32] Goldberg, David, et al., "Collaborative Filtering to Weave an Information Tapestry." 
Communications of the ACM. 1992, Vol. 35, 12, pp. 61-70. 

[33] Pazzani, Michael., "Representation of Electronic Mail Filtering Profiles: A User Study." 
2000. International Conference on Intelligent User Interfaces. pp. 202-206. 

[34] Krebis, Vladis., An Introduction to Social Network Analysis. orgnet.com. [Online] 
2005. [Cited: April 12, 2005.] http://www.orgnet.com/sna.html. 

[35] Perin, Constance., "Electronic Social Fields in Bureaucracies." Communications of the 

ACM. 1991, Vol. 35, 12, pp. 75-82. 

[36] Auguston, J. Gary and Minker, Jack., "An analysis of some graph theoretical clustering 
techniques." Journal of the ACM. October 1970, Vol. 17, 4, pp. 571-588. 

[37] Kishnamurthy, Balachander, and Jia Wang., "Topology Modeling via Cluster Graphs." 
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement. 2001, 
pp. 19-23. 

[38] A.De Paola, A. Tamburo,., "Reputation Management in Distributed Systems." 2008 

IEEE Symposium on Game theory, evolutionary approach, distributed systems. 

March 2008. 

[39] S. Kamvar, M. Schlosser, H. Garcia-Molina., "The Eigentrust algorithm for reputation 
management in P2P networks." Proceedings of the 12th international conference on 

World Wide Web. 2003, pp. 640-651. 



126 

 

[40] R. Morselli, J. Katz, B. Bhattacharjee., "A Game-Theoretic Framework for Analyzing 
Trust-Inference Protocols." Workshop on Economics of Peer-to-Peer Systems. 2004. 

[41] Drew Fudenberg, Jean Tirole., Game Theory. Cambridge : MIT Press, 1991. 

[42] Sepandar D. Kamvar, Mario T. Schlosser, Hector Garcia-Molina., "The EigenTrust 
Algorithm for Reputation Management in P2P Networks." Budapest : s.n., 2003. 
Proceedings of the Twelfth International World Wide Web Conference. 

[43] Welcome. The Colt Project. [Online] CERN - European Organization for Nuclear 
Research, September 9, 2004. [Cited: August 1, 2008.] 
http://acs.lbl.gov/~hoschek/colt/. 

[44] Grossman, W., "New Tack Wins Prisoner’s Dilemma." Wired Magazine. 10 13, 2004. 

[45] Shadel, B., et al., "Infection control practitioners’ perceptions and educational needs 
regarding bioterrorism: Results from a national needs assessment survey." American 
Journal of Infection Control, 2003, Vol. 31, pp. 129-134. 

[46] Booth, Christopher M., et al., "Clinical Features and Short-term Outcomes of 144 
Patients With SARS in the Greater Toronto Area." Journal of the American Medical 
Association, May 6, 2003, Issue 21, Vol. 289, pp. 2801-2809. 

[47] Shulgin, B., Stone, L. and Agur, Z., "Pulse Vaccination Strategy in the SIR Epidemic 
Model." 1998, Vol. 60, pp. 1123-1148. 

[48] Floyd, W., Kay, L. and Shapiro, and M., "Some elementary properties of SIR networks 
or, can i get sick because you got vaccinated?" Bulletins of Mathmatical Biology, 
December 1, 2007, Issue 3, Vol. 70, pp. 713-27. 

[49] Eames, K. T. and Keeling, M. J., "Modeling dynamic and network heterogeneities in the 
spread of sexually transmitted diseases." Proceedings of the National Academy of 
Sciences in the United States of America, 2002, Issue 20, Vol. 99, pp. 13330-13335. 

[50] Khuroo, M., "Discovery of Hepatitis E Virus – The Untold Story." JK-Practitioner, 
2004, Issue 3, Vol. 11, pp. 291-294. 

[51] Salovey, P., et al., "Emotional States and Physical Health." American Psychologist, 
2000, Issue 1, Vol. 55, pp. 110-121. 

[52] Granovetter, M. S., "Changing jobs: Channels of mobility information in a suburban 
community." Unpublished PhD dissertation. s.l. : Harvard University, 1970. 

[53] Layfield, R., Kantarcioglu, M. and Thuraisingham, B., "Simulating Bioterrorism 
through Epidemiology Approximation." IEEE International Conference on 
Intelligence and Security Informatics, 2008, pp. 82-87. 



127 

 

[54] Dillon, K. M., Minchoff, B. and Baker, K. H., "Positive emotional states and 
enhancement of the immune system." International Journal of Psychiatry in Medicine, 
1985, Vol. 15, pp. 13-18. 

[55] Baron, D. A., Hay, D. A. and Easom, H. M., "Treating Patients in Primary Care: The 
Impact of Mood, Behavior, and Thought Disturbances." Journal of the American 
Osteopathic Association, 2003, Issue 7, Vol. 103, pp. 319-329. 

[56] Waldschmidt, T., Cook, R. and Kovacs, E., "Alcohol and Inflammation & Immune 
Responses: Summary of the 2006 Alcohol and Immunology Research Interest Group 
(AIRIG) meeting." Alcohol, 2006, Issue 2, Vol. 42, pp. 137-142. 

[57] Borum, Randy., Psychology of Terrorism. Tampa : University of Florida, 2004. 

[58] Myerson, Roger B., Game Theory: Analysis of Conflict. s.l. : Harvard University Press, 
1997. 

[59] Bioterrorism Preparedness. Austin : Texas Institute for Health Policy Research, 2001. 

[60] "The Business of Terror: Conceptualizing Terrorist Organizations." Center for Defense 

Information. [Online] May 23, 2005. http://www.cdi.org/pdfs/terrorist-business-
model.pdf. 

[61] "OECD CONFERENCE ON CATASTROPHIC RISKS AND INSURANCE." Paris : 
Organisation for Economic Cooperation and Development, 2004. Catastrophic Risks 
and Insurance. pp. 1-3. 

[62] "Terrorism Risk Insurance Program." United States Department of Treasury. [Online] 
January 8, 2007. http://www.ustreas.gov/offices/domestic-finance/financial-
institution/terrorism-insurance/. 

[63] Osbourne, Martin J. and Rubinstein, A., A Course in Game Theory. Cambridge, Mass. : 
MIT Press, 1994. 

[64] Meltzer, Martin I., Damon, Inger and LeDuc, James W., "Smallpox as a Bioterrorist 
Weapon." Emerging Infectious Disease, 2001. 

[65] Li, Liuyi, Cheng, Suhua and Gu, Jiang., "SARS Infection Among Health Care Workers 
in Beijing, China." Journal of American Medical Association, 2003, Vol. 290, pp. 
2662-2663. 

[66] Guidance for Persons Who May Have Been Exposed to Severe Acute Respiratory 
Syndrome (SARS). Center for Disease Control. [Online] May 3, 2005. 
http://www.cdc.gov/ncidod/sars/pdf/exposuremanagement-sars.pdf. 

[67] Borenstein, Seth., "AP IMPACT: An American life worth less today." Associated Press. 

July 10, 2008. 



128 

 

[68] "Deaths: Final Data for 2005." National Vital Statistics Report, April 24, 2008, Issue 2, 
Vol. 54, pp. 1-121. 

[69] Hourly Rate Survey Report for Job: Registered Nurse. PayScale. [Online] October 30, 
2008. 
http://www.payscale.com/research/US/Job=Registered_Nurse_(RN)/Hourly_Rate. 

[70] HHS AWARDS $428 MILLION CONTRACT TO PRODUCE SMALLPOX 
VACCINE. United States Department of Health & Human Services. [Online] 
November 28, 2001. http://www.hhs.gov/news/press/2001pres/20011128.html. 

[71] 2007 World Population Datasheet. Population reference bureau. [Online] 
http://www.prb.org/Publications/Datasheets/2007/2007WorldPopulationDataSheet.as
px. 

[72] The World Factbook. Central Intelligence Agency. [Online] October 23, 2008. 
https://www.cia.gov/library/publications/the-world-factbook/. 

[73] Tax Stats at a Glance. Internal Revenue Service, United States Department of Treasury. 

[Online] June 4, 2008. http://www.irs.gov/taxstats/article/0,,id=102886,00.html. 

[74] State Government Tax Collections: 2007. US Censur Bureau. [Online] February 2008, 
2007. http://www.census.gov/govs/statetax/0700usstax.html. 

[75] Smallpox fact sheet: vaccine overview. Center for Disease Control. [Online] February 
7, 2007. http://www.bt.cdc.gov/agent/smallpox/vaccination/facts.asp. 

[76] Skillicorn, David., "Keyword Filtering for Message and Conversation Detection." 
Queen's University. [Online] [Cited: February 14, 2005.] 
http://www.cs.queensu.ca/home/skill/beyondkeywords.pdf. 

[77] Kishnamurthy, Balachander and Wang, Jia., "Topology Modeling via Cluster Graphs." 
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, 2001, 
pp. 19-23. 

[78] Cohen, Brian., "Incentives Build Robustness in BitTorrent." 2003. Proceedings of the 
1st Workshop on Economics of Peer-to-Peer Systems. 

[79] Halpern, Joseph and Teague, V., "Rational secret sharing and multiparty computation: 
extended abstract." 2004. Proceedings of the thirty-sixth annual ACM symposium on 
Theory of computing. 

[80] Harsanyi, John C., "Games with incomplete information played by ‘Bayesian’ players." 
Management Science, 1967. 

[81] Nash, John., "Equilibrium Points in n-Person Games." Proceedings of the National 
Academy of Sciences USA, 1950, Vol. 36, pp. 48-49. 



129 

 

[82] Scott, John., Social Network Analysis : a Handbook. London : Sage Publications, 1985. 

[83] Attayoor, S. P., et al., "A Cholera Epidemic Among the Nicobarese Tribe of Nancowry, 
Andaman, and Nicobar, India." American Society of Tropical Medicine and Hygene, 
2004, Issue 6, Vol. 71, pp. 822-827. 

[84] Booth, C., "Clinical Features and Short-term Outcomes of 144 Patients With SARS in 
the Greater Toronto Area." Journal of the American Medical Association, 2003, Issue 
21, Vol. 289. 

[85] Kress, M., "The Effect of Social Mixing Controls on the Spread of Smallpox—A Two-
Level Model." Health Care Management Science, 2005, Vol. 8, pp. 277-289. 

[86] Miyoshi, T., et al., "Characteristics of Norovirus Outbreaks during a Non-Epidemic 
Season." Japan Journal of Infectious Diseases, 2006, Vol. 59, pp. 140-141. 

[87] Moghadas, S., "Gaining insights into human viral diseases through mathematics." 
European Journal of Epidimiology, 2006, Vol. 21, pp. 337-342. 

[88] M. Seredynski, P. Bouvry, M.A. Klopotek., "Modelling the Evolution of Cooperative 
Behavior in Ad Hoc Networks using a Game Based Model." Computation 

Intelligence and Games. 2007, pp. 96-103. 

[89] R. Layfield, M. Kantarcioglu, B. Thuraisingham., "Proceedings of the 21st Annual 
Working Conference on Data and Applications Security." 2007. Enforcing Honesty in 
Assured Information Sharing Within a Distributed System. 

 

 

 

 

 

 



 

 

 

 

 

 



 1

 

 

 

Part III-A 

 

Handling Untrustworthy Partners: 

 Defensive Operations 

 

Collected Papers on 

Data Mining for Cyber Security Applications 

 

 

 
 



Flow-based Identification of Botnet Traffic by

Mining Multiple Log Files

Mohammad M. Masud1, Tahseen Al-khateeb2, Latifur Khan3

Bhavani Thuraisingham4, Kevin W. Hamlen5

Department of Computer Science, The University of Texas at Dallas

Richardson, TX 75080, USA

{1
mehedy,

2
tahseen,

3
lkhan}@utdallas.edu

{4
bhavani.thuraisingham,

5
hamlen}@utdallas.edu

Abstract—Botnet detection and disruption has been a major
research topic in recent years. One effective technique for botnet
detection is to identify Command and Control (C&C) traffic,
which is sent from a C&C center to infected hosts (bots) to
control the bots. If this traffic can be detected, both the C&C
center and the bots it controls can be detected and the botnet
can be disrupted. We propose a multiple log-file based temporal
correlation technique for detecting C&C traffic. Our main
assumption is that bots respond much faster than humans. By
temporally correlating two host-based log files, we are able to
detect this property and thereby detect bot activity in a host
machine. In our experiments we apply this technique to log
files produced by tcpdump and exedump, which record all
incoming and outgoing network packets, and the start times
of application executions at the host machine, respectively. We
apply data mining to extract relevant features from these log
files and detect C&C traffic. Our experimental results validate
our assumption and show better overall performance when
compared to other recently published techniques.

Keywords- Malware, botnet, intrusion detection, data mining.

I. INTRODUCTION

Botnets are emerging as “the biggest threat facing the in-

ternet today” [1] because of their enormous volume and sheer

power. Botnets containing thousands of bots (compromised

hosts) have been tracked by several different researchers [2],

[3]. Bots in these botnets are controlled from a Command

and Control (C&C) center, operated by a human botmaster

or botherder. The botmaster can instruct these bots to recruit

new bots, launch coordinated DDoS attack against specific

hosts, steal sensitive information from infected machines, send

mass spam emails, and so on. Fig. 1 illustrates a typical botnet

architecture.

Numerous researchers are working hard to combat this

threat and have proposed various solutions [4], [5], [2]. One

major research direction attempts to detect the C&C center

and disable it, preventing the botmaster from controlling the

botnet. Locating the C&C center requires identifying the

traffic exchanged between it and the bots. Our work adopts

this approach by using a data mining based technique to

identify temporal correlations between multiple log files. We

maintain two different log files for each host machine: (i) a

network packet trace or tcpdump, and (ii) an application

execution trace or exedump. The tcpdump log file records

all network packets that are sent/received by the host, and

the exedump log file records the start times of application

program executions on the host machine. Our main assumption

is that bots respond to commands much faster than humans do.

Thus, the command latency (i.e., the time between receiving a

command and taking actions) should be much lower, and this

should be reflected in the tcpdump and exedump log files.

Bot commands that have an observable effect upon the log

files we consider can be grouped into three categories: those

that solicit a response from the bot to the botmaster, those that

cause the bot to launch an application on the infected host

machine, and those that prompt the bot to communicate with

some other host (e.g., a victim machine or a code server). This

botnet command categorization strategy is explained in more

detail in Section III. We apply data mining to learn temporal

correlations between an incoming packet and (i) an outgoing

packet, (ii) a new outgoing connection, or (iii) an application

startup. Any incoming packet correlated with one of these

logged events is considered a possible botnet command packet.

Our approach is flow-based because rather than classifying

a single packet as C&C or normal traffic, we classify an

entire flow (or connection) to/from a host as C&C or normal.

This makes the detection process more robust and effective.

Our system is first trained with log files obtained from clean

hosts and hosts infected with a known bot, then tested with

logs collected from other hosts. The testing methodology is

explained in detail in Section IV.

Our technique is different from other botnet detection

techniques [5], [6], [2] in two ways. First, we do not impose

any restriction on the communication protocol. Our approach

should therefore also work with C&C protocols other than

those that use IRC as long as the C&C traffic possesses the

observable characteristics defined above. Second, we do not

rely on command string matching. Thus, our method should

work even if the C&C payloads are not available.

Our work makes two main contributions to botnet detection

research. First, we introduce multiple log correlation for C&C

traffic detection. We believe this idea could be successfully

extended to additional application-level logs such as those that

track process/service execution, memory/CPU utilization, and

disk accesses. Second, we have proposed a way to classify

botmaster commands into different categories, and we show



Fig. 1. A typical IRC-based botnet architecture

how to utilize these command characteristics to detect C&C

traffic. An empirical comparison of our technique with another

recent approach [5] shows that our strategy is more robust in

detecting real C&C traffic.

The rest of the paper is organized as follows: Section

II discusses related work on botnet detection. Section III

discusses our system setup and data collection process. Section

IV explains our botnet detection architecture and discusses

the details of the detection process. Section V evaluates our

system. Finally, Section VI concludes by summarizing our

work and suggesting future research directions.

II. RELATED WORK

Botnet defenses are being approached from at least three

major perspectives: analysis, tracking, and detection. Barford

and Yegneswaran [7] present a comprehensive analysis of

several botnet codebases and discuss various possible defense

strategies that include both reactive and proactive approaches.

Grizzard et al. [4] analyze botnets that communicate using

peer-to-peer networking protocols, concluding that existing

defense techniques that assume a single, centralized C&C

center are insufficient to counter these decentralized botnets.

Freiling et al. [3] summarize a general botnet-tracking

methodology for manually identifying and dismantling ma-

licious C&C centers. Rajab et al. [2] put this into practice

for a specific IRC protocol. They first capture bot malware

using a honeynet and related techniques. Captured malware

is next executed in a controlled environment to identify the

commands that the bot can receive and execute. Finally, drone

machines are deployed that track botnet activity by mimicking

the captured bots to monitor and communicate with the C&C

server. Dagon et al. [8] track botnet activity as related to

geographic region and time zone over a six month period. They

conclude that botnet defenses such as those described above

can be more strategically deployed if they take into account

the diurnal cycle of typical botnet propagation patterns.

Our research presented in this article is a detection tech-

nique. Cooke et al. [9] discuss various botnet detection tech-

niques and their relative merits. They conclude that monitoring

C&C payloads directly does not typically suffice as a botnet-

detection strategy because there are no simple characteristics

of this content that reliably distinguish C&C traffic from

normal traffic. However, Goebel and Holz [6] show that

botnets that communicate using IRC can often be identified by

their use of unusual IRC channels and IRC user nicknames.

Livadas et al. [5] use additional features including packet

size, flow duration, and bandwidth. Their technique is a two-

stage process that first distinguishes IRC flows from non-

IRC flows, and then distinguishes C&C traffic from normal

IRC flows. While these are effective detection techniques for

some botnets, they are specific to IRC-based C&C mech-

anisms and require access to payload content for accurate

analysis and detection. In contrast, our method does not

require access to botnet payloads and is not specific to any

particular botnet communication infrastructure. Karasaridis et

al. [10] consider botnet detection from an ISP or network

administrator’s perspective. They apply statistical properties

of C&C traffic to mine large collections of network traffic

for botnet activity. Our work focuses on detection from the

perspective of individual host machines rather than ISP’s.

III. BOT TRAFFIC ANALYSIS

In this section we describe our system setup, data collection

process, and approach to categorizing bot commands.

A. System setup

We tested our approach on two different IRC-based bots—

SDBot version 05a [11] and RBot version 0.5.1 [12]. The

testing platform consisted of five virtual machines running

atop a Windows XP host operating system. The host hardware

consisted of an Intel Pentium-IV 3.2GHz dual core processor

with 2GB RAM and 150GB Hard Disk. Each virtual machine

ran Windows XP with 256 MB virtual RAM and 8GB virtual

Hard Disk space. The five virtual machines played the role of

a botmaster, a bot, an IRC server, a victim, and a code server,

respectively. As with a typical IRC-based botnet, the IRC

server served as the C&C center through which the botmaster

issued commands to control the bot. The IRC server we used

was the latest version of Unreal IRCd Daemon [13], and

the botmaster’s IRC chat client was MIRC. The code server

ran Apache Tomcat, and contained different versions of bot

malware code and other executables. The victim machine was

a normal Windows XP machine. During the experiment the

botmaster instructed the bot to target the victim machine with

udp and ping attacks. All five machines were interconnected

in an isolated network as illustrated in Fig. 1.

B. Data collection

Data collection was performed in three steps. First, we

implemented a client for the botmaster that automatically

sent all possible commands to the bot. Second, we ran Win-

dump [14] to generate a tcpdump log file, and ran our own

implementation of a process tracer to generate a exedump

log file. Third, we ran each bot separately on a fresh virtual

machine, collected the resulting traces from the log files, and



TABLE I
SDBOT AND RBOT COMMAND CHARACTERISTICS

Observable effects Commands
addalias about execute udp cmd download

Bot-app × × X × X X

Bot-response × X × X X X

Bot-other × × × X × X

then deleted the infected virtual machine. Traces were also

collected from some uninfected machines connected to the

internet. Each trace spanned a 12-hour period. The tcpdump

traces amounted to about 3GB in total. Finally, these traces

were used for training and testing.

C. Bot command categorization

Not all bot commands have an observable effect upon the

log files we consider. We say that a command is observable

if it matches one or more of the following criteria:

1) Bot-response: The command solicits a reply message

from the bot to the C&C center. This reply is logged

in the tcpdump. For example, the SDbot commands

about and sysinfo are observable according to this

criterion.

2) Bot-app: The command causes the bot to launch an

executable application on the infected host machine. The

application start event will be logged in the exedump.

The execute command from SDbot is an example of

such a command.

3) Bot-other: The command causes the bot to contact

some host other than the C&C center. For example, the

command might instruct the bot to send UDP packets as

part of a DoS attack, send spam emails to other hosts,

or download new versions of bot malware from a code

server. Such events are logged in the tcpdump.

Some of the SDBot and RBot commands are listed in Table

1 and categorized using the above mentioned criteria. For a

comprehensive description of these commands, please refer

to [11], [12].

IV. ARCHITECTURE

Data collected via the procedure described in Section III was

used for training and testing using the architecture illustrated

in Fig. 2. For training, we first label each flow—i.e., each

(ip:port , ip′:port ′) pair—as a bot flow (conversation between

a bot and its C&C center), or a normal flow (all other con-

nections). Second, we compute several packet-level features

(detailed below) for each incoming packet. Third, we compute

flow-level features for each flow by aggregating the packet-

level features. Finally, these flow-level features are used to

train a classifier and obtain a classification model. For testing,

we take an unlabeled flow and compute its flow-level features

in the same way. Then we test the feature values against the

classification model and label it a normal flow or a bot flow.

The feature extraction process is explained next.

A. Feature Extraction

First we discuss the packet-level features, and then discuss

the flow-level features. The intuitive idea behind these features

is that human response to a command/request (e.g., a request

to send a file or execute an application by his peer) should be

much slower than a bot. In what follows, we refer to a packet

as incoming if its destination is the host being monitored, and

as outgoing if it originates from the monitored host.
a) Packet-level features.: The packet-level features we

consider can be summarized as follows:

• Bot-response (BR) (boolean-valued): An incoming

packet possesses this feature if it originated from some

ip:port and there is an outgoing packet to the same

ip:port within 100 ms of arrival of the incoming packet.

This indicates that it is a potential command packet. The

100 ms threshold has been determined by our observation

of the bots. We will refer to these incoming packets as

BR packets.

• BRtime (real-valued): This feature records the time

difference between a BR packet and its corresponding

outgoing packet. This is an important characteristic of a

bot.

• BRsize (real-valued): This feature records the length (in

KB) of a BR packet. We observe that command packets

typically have lengths of 1KB or less, whereas normal

packets have unbounded size.

• Bot-other (BO) (boolean-valued): An incoming packet

possesses this feature if it originated from some ip:port

and there is an outgoing packet to some ip′:port ′ within

200 ms of the arrival of the incoming packet, where ip′ 6=
ip. This is also a potential command packet. The 200 ms

threshold has also been determined by our observation of

the bots. We will refer to these incoming packets as BO

packets.

• BODestMatch (boolean-valued): A BO packet possesses

this feature if outgoing destination ip′ is found in its

payload. This indicates that the BO packet is possibly a

command packet that tells the bot to establish connection

with host ip′.

• BOtime (real-valued): This feature records the time

difference between a BO packet and its corresponding

outgoing packet. This is also an important characteristic

of a bot.

• Bot-App (BA) (boolean-valued): An incoming packet

possesses this feature if an application starts on the host

machine within 3 seconds of arrival of the incoming

packet. This indicates that it is potentially command

packet that instructs the bot to run an application. The 3



Fig. 2. System architecture

TABLE II
FLOW-LEVEL FEATURE SET

Feature Description

AvgPktLen Average and Variance of
VarPktLen length of packets in KB

Bot-app Number of BA packets as
percentage of total packets

AvgBAtime Average and Variance of BAtime
VarBAtime of all BA packets

Bot-reply Number of BR packets as
percentage of total packets

AvgBRtime Average and Variance of BRtime
VarBRtime of all BR packets

AvgBRsize Average and Variance of BRsize
VarBRsize of all BR packets

Bot-other Number of BO packets as
percentage of total packets

AvgBOtime Average and Variance of BOtime
VarBOtime of all BO packets

second threshold has been determined by our observation

of the bots. We will refer to these incoming packets as

BA packets.

• BAtime (real-valued): This feature records the time dif-

ference between receiving a BA packet and the launching

of the corresponding application.

• BAmatch (boolan-valued): A BA packet possesses this

feature if its payload contains the name of the application

that was launched.

b) Flow-level features.: As explained earlier, the flow-

level features of a flow are the aggregations of packet-level

features in that flow. They are summarized in Table 2. All

flow-level features are real-valued. Also note that we do not

use any flow-level feature that requires payload analysis.

B. Log file Correlation

Fig. 3 shows an example of multiple log file correlation.

Portions of the tcpdump (left) and exedump (right) log

files are shown in this example, side by side. Each record

in the tcpdump file contains the packet number (No), ar-

rival/departure time (Time), source and destination addresses

(Src/Dest), and payload or other information (Payload/Info).

Each record in the exedump file contains two fields: the

process start time (Start Time), and process name (Process).

The first packet (#10) shown in the tcpdump is a command

packet that instructs the bot to download an executable from

the code server and run it. The second packet (#11) is a

response from the bot to the botmaster, so the command

packet is a BR packet having BRtime = 1ms . The bot

quickly establishes a TCP connection with the code server

(other host) in packets #12–14. Thus, the command packet is

also a BO packet having BOtime = 7ms (the time differ-

ence between the incoming command and the first outgoing

packet to another host). After downloading, the bot runs the

executable mycalc.exe. Thus, this command packet is also

a BA packet having BAtime = 2.283s.

C. Classification

We use a Support Vector Machine (SVM), Bayes Net,

decision tree (J48), Naı̈ve Bayes, and Boosted decision tree

(Boosted J48) for the classification task. In our previous work

[15] we have found that each of these classifiers demonstrates

good performance for malware detection problems. Specifi-

cally, SVM is robust to noise and high dimensionality and

can be fine-tuned to perform efficiently on a specific domain.

Decision trees have a very good feature-selection capability

and are much faster than many other classifiers both in training

and testing time. Bayes Nets are capable of finding the inter-

dependencies between different attributes. Naı̈ve Bayes is also

fast, and performs well when the features are independent

of one another. Boosting is particularly useful because of its

ensemble methods. Thus, each of these classifiers has its own

virtue. In a real deployment, we would actually use the best

among them.

D. Packet Filtering

One major implementation issue related to examining the

packet traces is the large volume of traffic that needs to be

scanned. We try to reduce unnecessary scanning of packets

by filtering out the packets that are not interesting to us,

such as the TCP handshaking packets (SYN,ACK,SYNACK) and

NetBios session request/response packets.

V. EVALUATION

For evaluation, we tag all the flows as either bot flows or

normal flows depending on whether the flow is between a bot

and its C&C center or not. Then we extract feature-values



Fig. 3. Multiple log file correlation

TABLE III
PERFORMANCES OF DIFFERENT CLASSIFIERS ON FLOW-LEVEL FEATURES

Dataset Metric Boosted- Bayes- Naive- J48 SVM
J48 Net Bayes

ACC% 98.9 99.0 98.9 98.8 97.8
SDBot FP% 1.5 1.3 1.5 1.6 3.0

FN% 0.0 0.0 0.0 0.0 0.0

ACC% 98.8 96.4 95.2 96.4 96.4
RBot FP% 1.5 3.0 3.1 3.2 3.0

FN% 0.0 4.2 6.5 4.0 4.2

TABLE IV
COMPARING PERFORMANCES BETWEEN OUR METHOD (TEMPORAL) AND

THE METHOD OF LIVADAS ET AL. ON THE COMBINED DATASET

Method Metric Boosted- Bayes- Naive- J48 SVM
J48 Net Bayes

Temporal ACC% 99.9 99.5 99.1 99.2 99.1
Livadas ACC% 97.0 99.7 97.1 97.5 99.0

Temporal FP% 0.0 0.0 0.0 0.0 0.0
Livadas FP% 0.3 0.0 0.0 0.0 0.0

Temporal FN% 0.2 0.9 1.9 1.7 1.9
Livadas FN% 6.5 0.6 6.3 5.9 2.1

for each flow using the technique described in Section IV-A.

Finally, we apply five-fold cross validation on the data and

report the accuracy and false alarm rates. We use the Weka

ML toolbox [16] for classification.

A. Performance on different data sets

Table 3 reports the classification accuracies (ACC), false

positive rates (FP), and false negative rates (FN) for each of

the classifiers for different datasets. The datasets SDBot and

RBot correspond to those where the bot-flows are generated

only from SDBot and RBot, respectively; and normal flows are

generated from uninfected machines. The results are obtained

by applying five-fold cross validation on the datasets. Boosted

J48 has the best detection accuracy (98.8%) for RBot, whereas

Bayes Net has the best detection accuracy (99.0%) for SDBot.

However, it is evident that Boosted J48 is less dataset-sensitive

since it performs consistently on both datasets, and Bayes

Net is only 0.1% better than Boosted J48 for the SDBot

dataset. Thus, we conclude that BoostedJ48 has overall better

performance than other classifiers. This is also supported by

the results presented next.

B. Comparison with other techniques

We also compare our technique with another machine-

learning technique applied by Livadas et al. [5]. They extract

several flow-based features, such as a histogram of packet

sizes, flow duration, bandwidth etc., but these are different

from our feature set. They first identify IRC flows and then

detect bot flows in the IRC flows. We don’t need to identify

IRC flows to detect C&C traffic using our analysis, but in order

to perform a fair comparison we filter out non-IRC flows. We

then extract their optimal set of features from the filtered data,

apply five-fold cross validation, and report the accuracy and

false alarm rates.

The rows labeled “Temporal” and “Livadas” in Table 4

report the classification accuracies (ACC), false positive rates

(FP), and false negative rates (FN) of our technique and the

technique of Livadas et al. [5], respectively. The comparison

reported is for the combined dataset that consists of bot-

flows from both SDBot and RBot infected machines, and all

the normal flows from uninfected machines (with non-IRC

flows filtered out). We see that Temporal performs consistently

across all classifiers having accuracy > 99%, whereas Livadas

has ≤ 97.5% accuracy in three classifiers and shows slightly

better accuracy (0.2% higher) than Temporal only with Bayes

Net. Bayes Net tends to perform well on a feature set if there

are dependencies among the features. Since it is likely that

there are dependencies among the features used by Livadas,

we infer that the overall detection accuracy of Livadas is

probably sensitive to classifiers, whereas Temporal is robust to

all classifiers. Additionally, Temporal outperforms Livadas in

false negative rates for all classifiers except Bayes Net. Finally,

we again find that BoostedJ48 has the best performance among

all classifiers, so we conclude that our Temporal method with

BoostedJ48 has the best overall performance.

Fig. 4 presents the receiver operating characteristic (ROC)

curves corresponding to the combined dataset results. ROC

curves plot true positive rate against false positive rate. An



Fig. 4. ROC curves of Bayes Net and Boosted J48 on the combined data
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Fig. 5. Flow summary statistics. (above): Average packet lengths of normal
and bot-flows, (below): Average BRtime, BOtime, and BAtime of bot-flows

ROC curve is better if the area under the curve (AUC) is

higher, which indicates a higher probability that an instance

will be correctly classified. In this figure, the ROC curve

labeled as “Bayes Net-Livadas” corresponds to the ROC curve

of Bayes Net on the combined data set for the Livadas et

al. technique, and so on. We see that all of the ROC curves

are almost co-incidental, except BoostedJ48-Livadas, which

is slightly worse than the others. The AUC of “BoostedJ48-

Livadas” is 0.993, whereas the AUC of all other curves are

greater than or equal to 0.999.

C. Further analysis

Fig. 5 shows statistics of several features. The upper chart

plots the average packet length (in KB) of each flow that

appears in the dataset. Bot-flows and normal flows are shown

as separate series. A data point (X,Y ) represents the average

packet length Y of all packets in flow X of a particular series

(bot-flow or normal). It is clear from the chart that bot-flows

have a certain packet length (≤ 0.2KB), whereas normal

flows have rather random packet lengths. Thus, our assumption

about packet lengths is validated by this chart. The lower

chart plots three different response times: Bot-response time

(BRtime), Bot-other time (BOtime), and Bot-app time (BAtime)

for each bot-flow. It is evident that average BRtime is less

than 0.1 second, average BOtime is less than 0.2 seconds and

average BAtime is between 0.6 and 1.6 seconds. The threshold

values for these response times were chosen according to these

observations.

VI. CONCLUSION

We presented the novel idea of correlating multiple log files

and applying data mining for detecting botnet C&C traffic. Our

idea is to utilize the temporal correlation between two different

log files: tcpdump, and exedump. The tcpdump file logs

all network packets that are sent/received by a host, whereas

the exedump file logs the start times of application program

executions on the host. We implement a prototype system

and evaluate its performance using five different classifiers:

support vector machines, decision trees, Bayes Nets, Boosted

decision trees, and Naı̈ve Bayes. Comparison with another

technique by Livadas et al. [5] for C&C traffic detection shows

that our method has overall better performance when used

with a Boosted decision tree classifier. The technique used

by Livadas et al. first identifies IRC flows and then detects

botnet traffic from the IRC flows. Our technique is more

general because it does not need to identify IRC traffic and

is therefore applicable to non-IRC botnet protocols, as long

as certain realistic assumptions about the command-response

timing relationships (detailed in Section III) remain valid.

In future work we intend to apply this temporal corre-

lation technique to more system level logs such as those

that track process/service executions, memory/CPU utilization,

disk reads/writes, and so on. We also would like to implement

a real-time C&C traffic detection system using our approach.
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Chapter 15

DETECTING REMOTE EXPLOITS

USING DATA MINING

Mohammad Masud, Latifur Khan, Bhavani Thuraisingham,
Xinran Wang, Peng Liu and Sencun Zhu

Abstract This paper describes the design and implementation of DExtor, a data-

mining-based exploit code detector that protects network services. DEx-

tor operates under the assumption that normal traffic to network ser-

vices contains only data whereas exploits contain code. The system is

first trained with real data containing exploit code and normal traffic.

Once it is trained, DExtor is deployed between a web service and its

gateway or firewall, where it operates at the application layer to detect

and block exploit code in real time. Tests using large volumes of normal

and attack traffic demonstrate that DExtor can detect almost all the

exploit code with negligible false alarm rates.

Keywords: Server attacks, exploit code, data mining, attack detection

1. Introduction

Remote exploits are often used by attackers to gain control of hosts
that run vulnerable services or software. Typically, an exploit is sent
as an input to a remote vulnerable service to hijack the control flow of
machine instruction execution. Attackers sometimes inject executable
code in the exploit that is run after a successful hijacking attempt. We
refer to such remote code-carrying exploits as “exploit code.”
Several approaches have been proposed for analyzing network flows

to detect exploit code [1, 4, 8–11]. An attack can be prevented if an
exploit is detected and intercepted while it is in transit to a server. This
approach is compatible with legacy code and does not require changes to
the underlying computing infrastructure. Our solution, DExtor, follows
this strategy. In particular, it uses data mining to address the general
problem of exploit code detection.
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Abstract

Recent approaches in classifying evolving data streams

are based on supervised learning algorithms, which can be

trained with labeled data only. Manual labeling of data

is both costly and time consuming. Therefore, in a real

streaming environment, where huge volumes of data appear

at a high speed, labeled data may be very scarce. Thus,

only a limited amount of training data may be available for

building the classification models, leading to poorly trained

classifiers. We apply a novel technique to overcome this

problem by building a classification model from a training

set having both unlabeled and a small amount of labeled

instances. This model is built as micro-clusters using semi-

supervised clustering technique and classification is per-

formed with κ-nearest neighbor algorithm. An ensemble of

these models is used to classify the unlabeled data. Empiri-

cal evaluation on both synthetic data and real botnet traffic

reveals that our approach, using only a small amount of la-

beled data for training, outperforms state-of-the-art stream

classification algorithms that use twenty times more labeled

data than our approach.

1 Introduction

Stream data classification is a challenging problem be-

cause of two important properties: its infinite length and

evolving nature. Data streams may evolve in several ways:

the prior probability distribution p(c) of a class c may

change, or the posterior probability distribution p(c|x) of the

class may change, or both the prior and posterior probabil-

ities may change. In either case, the challenge is to build a

classification model that is consistent with the current con-

cept. Traditional learning algorithms that require several

passes on the training data, cannot be directly applied to the

streaming environment, because the number of training ex-

amples would be infinite. To solve this problem, ensemble

classification techniques have been proposed.

Ensemble approaches have the advantage that they can

be updated efficiently, and they can be easily made to adopt

the changes in the stream. Several ensemble approaches

have been devised for classification of evolving data streams

[7, 10]. The general technique practiced by these ap-

proaches is that the data stream is divided into equal-sized

chunks. Each of these chunks is used to train a classifier.

An ensemble of L such classifiers are used to test unlabeled

data. However, these ensemble approaches are based on su-

pervised learning algorithms, and can be trained only with

labeled data. But in practice, labeled data in streaming en-

vironment are rare.

Manual labeling of data is usually costly and time con-

suming. So, in an streaming environment, where data ap-

pear at a high speed, it may not be possible to manually

label all the data as soon as they arrive. Thus, in practice,

only a small fraction of each data chunk is likely to be la-

beled, leaving a major portion of the chunk as unlabeled.

So, a very limited amount of training data will be available

for the supervised learning algorithms. Considering this dif-

ficulty, we propose an algorithm that can handle “partially

labeled” training data in a streaming environment. By “par-

tially labeled” we mean only a fraction (e.g. 5%) of the

training instances are labeled, and by “completely labeled”

we mean all (100%) the training instances are labeled. Our

approach is capable of producing the same (or even bet-

ter) results with partially labeled training data compared to

other approaches that use completely labeled training data

having twenty times more labeled data than our approach.

Naturally, stream data could be stored in buffer and pro-



cessed when the buffer is full, so we divide the stream data

into equal sized chunks. We train a classification model

from each chunk. We propose a semi-supervised cluster-

ing algorithm to create K clusters from the partially labeled

training data. A summary of the statistics of the instances

belonging to each cluster is saved as a “micro-cluster”.

These micro-clusters serve as a classification model. To

classify a test instance using this model, we apply the κ-

nearest neighbor (κ-NN) algorithm to find the Q nearest

micro-clusters from the instance and select the class that has

the highest frequency of labeled data in these Q clusters. In

order to cope with the stream evolution, we keep an ensem-

ble of L such models. Whenever a new model is built from

a new data chunk, we update the ensemble by choosing the

best L models from the L+1 models (previous L models and

the new model), based on their individual accuracies on the

labeled training data of the new data chunk. Besides, we

refine the existing models in the ensemble whenever a new

class of data evolves in the stream.

It should be noted that when a new data point appears

in the stream, it may not be labeled immediately. We defer

the ensemble updating process until some data points in the

latest data chunk have been labeled, but we keep classifying

new unlabeled data using the current ensemble. For exam-

ple, consider the online credit-card fraud detection problem.

When a new credit-card transaction takes place, its class

({fraud,authentic}) is predicted using the current ensemble.

Suppose a ‘fraud’ transaction has been mis-classified as ‘au-

thentic’. When the customer receives the bank statement,

he will identify this error and report to the authority. In this

way, the actual labels of the data points will be obtained,

and the ensemble will be updated accordingly.

We have several contributions. First, we propose an effi-

cient semi-supervised clustering algorithm based on cluster-

impurity measure. Second, we apply our technique to clas-

sify evolving data streams. To our knowledge, there are

no stream data classification algorithms that apply semi-

supervised clustering. Third, we provide a solution to the

more practical situation of stream classification when la-

beled data are scarce. We show that our approach can

achieve better classification accuracy than other stream clas-

sification approaches, utilizing only a fraction (e.g. 5%) of

the labeled instances used in those approaches. Finally, we

apply our technique to detect botnet traffic, and obtain 98%

classification accuracy on average. We believe that the pro-

posed method provides a promising, powerful, and practical

technique to the stream classification problem in general.

The rest of the paper is organized as follows: section

2 discusses related work, section 3 describes the semi-

supervised clustering technique, section 4 discusses the

ensemble classification with micro-clusters, section 5 dis-

cusses the experiments and evaluation of our approach, and

section 6 concludes with directions to future works.

2 Related work

Our work is related to both stream classification and

semi-supervised clustering techniques. We briefly discuss

both of them.

Semi-supervised clustering techniques utilize a small

amount of knowledge available in the form of pairwise

constraints (must-link, cannot-link), or class labels of the

data points. Recent approaches for semi-supervised clus-

tering incorporated pairwise constraints on top of the un-

supervised K-means clustering algorithm and formulated

a constraint-based K-means clustering problem [2, 9],

which was solved with an Expectation-Maximization (E-

M) framework. Our approach is different from these ap-

proaches because rather than using pair-wise constraints,

we utilize a cluster-impurity measure based on the limited

labeled data contained in each cluster. If pair-wise con-

straints are used, then the running time per E-M step is

quadratic in total number of labeled points, whereas the run-

ning time is linear if impurity measures are used. So, the

impurity measures are more realistic in classifying a high-

speed stream data.

There have been many works in stream data classifica-

tion. There are two main approaches - single model classifi-

cation, and ensemble classification. Single model classifica-

tion techniques incrementally update their model with new

data to cope with the evolution of the stream [4, 5]. These

techniques usually require complex operations to modify

the internal structure of the model and may perform poorly

if there is concept-drift in the stream. To solve these prob-

lems, several ensemble techniques for stream data mining

have been proposed [7, 10]. These ensemble approaches

have the advantage that they can be more efficiently built

than updating a single model and they observe higher accu-

racy than their single model counterpart [8].

Our approach is also an ensemble approach, but it is

different from other ensemble approaches in two aspects.

First, previous ensemble-based techniques use the underly-

ing learning algorithm (such as decision tree, Naive Bayes,

etc.) as a black-box and concentrate only on building an

efficient ensemble. But we concentrate on the learning al-

gorithm itself, and try to construct efficient classification

models in an evolving scenario. In this light, our work is

more closely related with the work of Aggarwal et al [1].

Secondly, previous techniques (including [1] require com-

pletely labeled training data. But in practice, a very limited

amount of labeled data may be available in the stream, lead-

ing to poorly trained classification models. So our approach

is more realistic in a stream environment. Our model is also

different from Aggarwal et al. [1] in one more aspect: Ag-

garwal et al. apply horizon-fitting to classify evolving data

streams, whereas we use a fixed-sized ensemble of classi-

fiers, which requires less memory since we do not need to

store snapshots.



3 Impurity-based clustering with small

number of labeled data

In the semi-supervised clustering problem, we are given

m data points X = {x1, x2, ..., xm}, and their corresponding

class labels, Y = {y1, y2, ..., ym}, yj ∈ {φ, 1, ..., C} where

C is the total number of classes. If a data point xj ∈ X

has yj = φ, then it is unlabeled. We are to create K clusters,

maintaining the constraint that all labeled points in the same

cluster have the same class label. Given a limited amount

of labeled data, the goal of impurity-based clustering is to

create K clusters by minimizing the intra-cluster dispersion

(same as unsupervised K-means) and at the same time min-

imizing the impurity of each cluster. We will refer to this

problem as K-means with Minimization of Cluster Impurity

(MCI-Kmeans). A cluster is completely pure if it contains

labeled data points from only one class (along with some

unlabeled data). Thus, the objective function should penal-

ize each cluster for being impure. The general form of the

objective function is as follows:

OMCIKmeans =

K∑

i=1

∑

x∈Xi

||x− ui ||
2 +

K∑

i=1

Wi ∗ Impi (1)

where Wi is the weight associated with cluster i and Impi

is the impurity of cluster i. In order to ensure that both the

intra-cluster dispersion and cluster impurity are given the

same importance, the weight associated with each cluster

should be adjusted properly. Besides, we would want to pe-

nalize each data point that contributes to the impurity of the

cluster (i.e., the labeled points). So, the weight associated

with each cluster is chosen to be

Wi = |Li| ∗ D̄Li
(2)

where Li is the set of all labeled data points in Cluster i

and D̄Li
is the average dispersion from each of these labeled

points to the cluster centroid. Thus, each labeled point has a

contribution to the total penalty, which is equal to the cluster

impurity multiplied by the average dispersion of the labeled

points from the centroid. We observe that equation (2) is

equivalent to the sum of dispersions of all labeled points

from the cluster centroid, i.e., Wi =
∑

x∈Li
||x−ui ||

2.

Substituting this value of Wi in (1) we obtain:

OMCIKmeans =
K∑

i=1

∑

x∈Xi

||x− ui ||
2 +

K∑

i=1

∑

x∈Li

||x− ui ||
2 ∗ Impi

=
K∑

i=1

(
∑

x∈Xi

||x− ui ||
2 +

∑

x∈Li

||x− ui ||
2 ∗ Impi) (3)

Impurity measures: Equation (3) should be applicable to

any impurity measure in general. We use the following im-

purity measure: Impi = ADCi ∗ Enti, where ADCi is the

“aggregated dissimilarity count” of cluster i and Enti is the

entropy of cluster i. In order to understand ADCi, we first

need to define “Dissimilarity count”.

Definition 1 (Dissimilarity count) Dissimilarity count

DCi(x, y) of a data point x in cluster i having class label y is

the total number of labeled points in that cluster belonging

to classes other than y. If x is unlabeled (i.e., y = φ), then

DCi(x, y) is zero.

In other words, DCi(x, y) = 0, if x is unlabeled, and DCi(x, y)

= |Li| − |Li(c)|, if x is labeled and its label y = c, where

Li(c) is the set of labeled points in cluster i belonging

to class c. Note that DCi(x, y) can be computed in con-

stant time, if we keep an integer vector to store the counts

|Li(c)|, c ∈ {1, .., C}. “Aggregated dissimilarity count” or

ADCi is the sum of the dissimilarity counts of all the points

in cluster i: ADCi =
∑

x∈Li
DCi(x, y). Entropy of a cluster i

is computed as: Enti =
∑C

c=1(−pi
c ∗ log(pi

c)), where pi
c is the

prior probability of class c, i.e., pi
c = |Li(c)|

|Li|
.

The use of Enti in the objective function ensures that

clusters with higher entropy get higher penalties. However,

if only Enti had been used as the impurity measure, then

each labeled point in the same cluster would have received

the same penalty. But we would like to favor the labeled

points belonging to the majority class in a cluster, and dis-

favor the points belonging to the minority classes. Doing

so would force more labeled points of the majority class to

be moved into the cluster, and more labeled points of the

minority classes to be moved out of the cluster, making the

clusters purer. This is ensured by introducing ADCi to the

equation. We call the combination of ADCi and Enti as

“compound impurity measure” since it can be shown that

ADCi is proportional to the “gini index” of cluster i:

ADCi =

C∑

c=1

(|Li(c)|)(|Li| − |Li(c)|) = (|Li|)
2

C∑

c=1

(pi
c)(1− pi

c)

= (|Li|)
2(1−

C∑

c=1

(pi
c)

2) = (|Li|)
2 ∗Ginii

where Ginii is the gini index of cluster i.

The problem of minimizing equation (3) is an

incomplete-data problem because the cluster labels and the

centroids are all unknown. The common solution to this

problem is to apply E-M [3]. The E-M algorithm consists

of three basic steps: initialization, E-step and M-step. The

technical details of these steps can be found in [6].

4 Micro-clustering and ensemble training
After creating K clusters using the semi-supervised algo-

rithm, we extract and save summary of the statistics of the

data points in each cluster as a “micro-cluster” and discard

the raw data points. We will refer to the K micro-clusters

built from a data chunk as a classification model, since we

use these micro-clusters to classify unlabeled data. We keep

an ensemble of L such models.

4.1 Storing the cluster summary
information as micro-clusters

Each model M i ∈ M contains K micro-clusters

{M i
1, ..., M i

K}, where each micro-cluster M i
j is a summary of



the statistics of the data points X i
j = {xi

j1
, ...xi

jN
} belonging

to that cluster. The summary contains the following statis-

tics: i) N : the total number of points; ii) Lt: the total number

of labeled points; iii) {Lp[c]}C
c=1: a vector containing the to-

tal number of labeled points belonging to each class. iv) u:

the centroid of the cluster; v) {Sum[r]}d
r=1: a vector con-

taining the sum of each dimension of the data points in the

cluster, where Sum[r] contains the sum of the values of the

rth dimension. This vector is required to re-compute the

cluster centroid after merging two micro-clusters.

4.2 Updating the ensemble

Every time a new data chunk Dn appears, we train a new

model Mn from Dn and update the ensemble by choosing

the best L models from the existing L+1 models (M∪{Mn}).

Algorithm 1 sketches this updating process.

Algorithm 1 Ensemble-Update

Input: Xn,Yn: training data points and class labels associated

with some of these points in chunk Dn

Zn: test data points in chunk Dn

K: number of clusters to be created

M : current ensemble of L models {M1, ..., ML}
Output: Updated ensemble M

1: Obtain K clusters {Xn
1 , ...,Xn

K} using E-M algorithm. and

compute their summary of statistics {Mn
1 , ..., Mn

K}
2: if no cluster M i

j ∈M contains some class c that is seen in the

new model Mn then

3: Refine-Ensemble(M, Mn)

4: end if

5: Test each model M i
j ∈M and Mn on the labeled data of Xn

and obtain its accuracy

6: M ← Best L models in M ∪ {Mn} based on accuracy.

7: Predict the class labels of data points in Zn with M .

Description of the algorithm “Ensemble-Update”: As-

suming that the new data chunk Dn has some labeled data,

we first randomly divide it into two subsets; Xn: the training

set and Zn: the test set. We include all the labeled instances

and a few unlabeled instances from Dn in the training set.

The rest of the unlabeled instances in Dn are included in

the test set. We create K clusters using Xn with the clus-

tering technique described in section 3. We then extract the

summary of statistics from each cluster Xn
j and store it as

a micro-cluster Mn
j (line 1). We handle a special case in

lines (2-4) that deals with the evolving data streams. It is

possible that in the new data chunk, suddenly a new class

has appeared that never appeared in the stream before. Or it

may happen that a class has appeared, which has not been

in the stream for a long time. In either case, the class is un-

known to the existing ensemble of models M . So, we refine

the models in M so that they can correctly classify the in-

stances belonging to that class. This refinement process will

be explained shortly. Since we have L+1 models now, one

of them must be discarded. This is done by testing the ac-

curacy of each of these models on the labeled data points in

the training data Xn, and removing the worst of them (lines

5-6). Finally, we predict the classes of the test data Zn with

the new ensemble M (line 7).

Ensemble refinement: The ensemble M is refined us-

ing the newly built model Mn. The refinement procedure

first looks into each micro-cluster Mn
j of the model Mn. If

any micro-cluster has some labeled data and majority of the

labeled data are in class ĉ, but no model in the ensemble

M has any micro-cluster containing labeled data of class ĉ,

then we do the following: for each model M i ∈ M , we inject

the micro-cluster Mn
j in M i with some probability, called

the probability of injection, or ρ. To inject a micro-cluster,

we first merge two nearest micro-clusters in M i having the

same majority class. Then we add the new micro-cluster

Mn
j to M i. This ensures that total number of micro-clusters

in the model remains constant.

The reasoning behind this refinement is as follows. Since

no model in ensemble M has knowledge of the class ĉ, the

models will certainly miss-classify any data belonging to

the class. By injecting micro-clusters of the class ĉ, we in-

troduce some data from this class into the models, which

reduces their miss-classification rate. It is obvious that for

higher values of ρ, more training instances will be provided

to a model, which will probably induce more error reduc-

tion. So, when ρ = 1, we will probably have maximum re-

duction in prediction error for a single model. However, if

the same set of micro-clusters are injected in all the models,

then the correlation among them may increase, resulting in

reduced prediction accuracy of the ensemble [8]. Lemma 1

states that the ensemble error is the lowest when ρ = 0.

Lemma 1 Let EM be the added error of the ensemble M

when ρ ≥ 0 and E0
M is the added error of the ensemble M

when ρ = 0. Then EM ≥ E0
M for any ρ ≥ 0.

Proof: See [6]. �

So, in summary, if we increase ρ, single model error de-

creases but the ensemble error increases. So, the net effect

is that when ρ is initially increased from zero, the overall

error keeps decreasing upto a certain point. After that point,

increasing ρ hurts performance (i.e., the total error starts in-

creasing) due to increased correlation among the models.

This trade-off is also discussed in our experimental results

(section 5.3). So, we have to choose a value of ρ that can

minimize the overall error. In our experiments, the best

value was found to be within 0.5-0.75.

4.3 Ensemble classification using
κ-nearest neighbor

In order to classify an unlabeled data point x with a

model M i, we perform the following steps: i) find the Q-

nearest labeled micro-clusters from x in M i, by comput-

ing the distance between the point and the centroids of the

micro-clusters. A micro-cluster is assumed to be labeled if



it has at least one labeled data point. ii) select the class with

the highest “cumulative normalized-frequency (CNFrq)” in

these Q clusters as the predicted class of x. The “normal-

ized frequency” of a class c in a micro-cluster is the number

of instances of class c divided by the total number of labeled

instances in that micro-cluster. CNFrq of a class c is the sum

of the normalized frequencies of class c in all the Q clusters.

In order to classify x with the ensemble M , we perform the

following steps: i) find the Q-nearest labeled micro-clusters

from x in each model M i ∈ M , ii) select the class with the

highest CNFrq in these L ∗Q clusters as the predicted class.

5 Experiments

In this section we discuss the data sets used in the exper-

iments, the system setup, the results, and analysis.

5.1 Datasets and experimental setup

We apply our technique on real botnet dataset generated

in a controlled environment, and also on synthetic datasets.

Details of these datasets are discussed in [6].

Each dataset is divided into two equal subsets: training

and testing, such that every training instance is followed by

a test instance. Our algorithm will be mentioned hence-

forth as “SmSCluster”, which is the acronym for Semi-

supervised Stream Clustering. Parameter settings of Sm-

SCluster are as follows, unless mentioned otherwise: K

(number of micro-clusters) = 50; Q (number of nearest

neighbors for the κ-NN classification) = 1; ρ (probability

of injection) = 0.75; Chunk-size = 1,600 records for botnet

dataset, and 1,000 records for synthetic dataset; L (ensem-

ble size) = 8; P (Percentage of labeled points): 5% in all

datasets, meaning only 5% (randomly selected) of the train-

ing data are assumed to have labels;

We compare our algorithm with that of Aggarwal et al

[1]. We will refer to this approach as “On Demand Stream”.

For the On Demand Stream, we use all the default values of

its parameters. We use the same set of training and test data

for both On Demand Stream and SmSCluster with the only

difference that in SmSCluster, only 5% data in the training

set have labels, but in On Demand Stream, 100% data in the

training set have labels. So, if there are 100 data points in a

training set, then On Demand Stream has 100 labeled train-

ing data points, but SmSCluster has only 5 of them labeled

and 95 of them unlabeled. Also, for a fair comparison, the

chunk-size of SmSCluster is made equal to the buffer size

of On Demand Stream. We run our own implementation of

the On Demand Stream and report the results.

5.2 Comparison with baseline methods

Figure 1(a) shows the accuracy of SmSCluster

and On Demand Stream (for “stream speed”=80,

“buffer size”=1,600, and kfit=80) on the botnet data.

We also obtain similar results for other values of

“stream speed” and “buffer size” for On Demand Stream.

The X-axis represents stream in time units and the Y-axis

represents accuracy. Here each time unit is equal to 80 data

points. For example, the left bar at time unit 120 (X=120)

shows the accuracy of of SmSCluster at that time, which

is 98%. The right bar at the same time unit shows the ac-

curacy of On Demand Stream, which is 94%. SmSCluster

has 4% or better accuracy than On Demand Stream in all

the five time-stamps shown in the chart. Figure 1(b) shows
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Figure 1. Accuracy comparison on (a) botnet

data, and (b) synthetic data

the accuracies of SmSCluster and On Demand Stream ( for

“stream speed”=200, “buffer size”=1,000 , and kfit=50)

on synthetic data (100K, C10, D40). We also obtain similar

results for other values of “stream speed” and “buffer size”

for On Demand Stream. SmSCluster has 4% or better

accuracy than On Demand Stream in all time units except

at time 100, when the difference is 2.3%.

From the above results, we can conclude that SmSClus-

ter outperforms On Demand Stream in all datasets. There

are two main reasons behind this. First, SmSCluster con-

siders both the dispersion and impurity measures in build-

ing clusters, but On Demand Stream considers only purity,

since it applies supervised K-means algorithm. Besides,

SmSCluster uses proportionate initialization, so that more

clusters are formed for the larger classes (i.e., classes hav-

ing more instances). But On Demand Stream builds equal

number of clusters for each class, so clusters belonging to

larger classes may be bigger (and more sparse). Thus, the

clusters of SmSCluster are likely to be more compact than

those of the On Demand Stream. As a result, the κ-nearest

neighbor classification gives better prediction accuracy in

SmSCluster. Second, SmSCluster applies ensemble classi-

fication, rather than the “horizon fitting” technique used in

On Demand Stream. Horizon fitting selects a horizon of

training data from the stream that corresponds to a variable-

length window of the most recent (contiguous) data chunks.

It may be possible that one or more chunks in that window

have been outdated, resulting in a less accurate classifica-

tion model. This is because the set of training data that is

the best representative of the current concept are not nec-

essarily contiguous. But SmSCluster always keeps the best



training data (or models) that are not necessarily contigu-

ous. So, the ensemble approach is more flexible in retaining

the most up-to-date set of training data, resulting in a more

accurate classification model.

5.3 Running times and sensitivity to
parameters

The processing speed of SmSCluster for botnet data is

4,000 instances per second, and for synthetic data (300K,

C10, D20) 2,500 instances per second, including training

and testing instances. Speed is faster for the botnet data

since it has only 2 classes, as opposed to 10 classes for the

synthetic data. Besides, experimental results show that [6]

running time of SmSCluster scales linearly to higher dimen-

sionality and class labels.

All the following results are obtained from the synthetic

data (300K, C10, D20), but these are the general trends in

any dataset. Figure 2(a) shows how the classification ac-

curacy varies for SmSCluster with the number of micro-

clusters (K), and the number of nearest neighbors (Q) for

the κ-NN algorithm. We observe that higher values of K

lead to better classification accuracies. This may happen be-

cause when K is larger, smaller and more compact clusters

are formed, leading to a finer-grained classification model

for the κ-NN algorithm. However, there is no significant

improvement after K=50. We also observe the effect of Q

from this chart. It is evident that Q=1 has the highest ac-

curacy, meaning, we need to apply only 1-nearest neighbor.

This is true for any value of K. Figure 2(b) shows how the

classification accuracy varies for SmSCluster with percent-

age of labeled data (P ) in the training set and the number of

micro-clusters (K). We see that the accuracy increases with

increasing number of labeled data in the training set. This

is desirable, because more labeled data means better guid-

ance for clustering, leading to reduced error. However, after

a certain point (20%), there is no real improvement. This is

because, probably this amount of labeled data is sufficient

for the model. The parameters ρ (injection probability) and

L (ensemble size) also have effects on accuracy. We ob-

serve that increasing ρ (injection probability) up to 0.5 in-

creases the overall accuracy. After that, the accuracy drops

in general. This result follows from our analysis discussed

in section 4.2. We achieve the highest accuracy for ensem-

ble size (L)=8. Further increasing the ensemble size does

not improve the performance. This is possible if the dataset

evolves continuously, resulting in some out-dated models in

a larger ensemble.

6 Conclusion

We address a more realistic problem of stream mining:

training with a limited amount of labeled data. Our tech-

nique is a more practical approach to the stream classifi-

cation problem since it requires a fewer amount of labeled

data, saving much time and cost that would be otherwise
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required to manually label the data. Previous approaches

for stream classification did not address this vital prob-

lem. We propose and implement a semi-supervised clus-

tering based stream classification algorithm to solve this

limited labeled-data problem. We tested our technique on

synthetically generated dataset, and real botnet dataset, and

got better classification accuracies than other stream clas-

sification techniques. In future, we would like to incor-

porate feature-weighting and distance-learning in the semi-

supervised clustering.
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Abstract We present a scalable and multi-level feature

extraction technique to detect malicious executables. We

propose a novel combination of three different kinds of

features at different levels of abstraction. These are binary

n-grams, assembly instruction sequences, and Dynamic

Link Library (DLL) function calls; extracted from binary

executables, disassembled executables, and executable

headers, respectively. We also propose an efficient and

scalable feature extraction technique, and apply this technique

on a large corpus of real benign and malicious executables.

The above mentioned features are extracted from the corpus

data and a classifier is trained, which achieves high accuracy

and low false positive rate in detecting malicious executables.

Our approach is knowledge-based because of several reasons.

First, we apply the knowledge obtained from the binary

n-gram features to extract assembly instruction sequences

using our Assembly Feature Retrieval algorithm. Second, we

apply the statistical knowledge obtained during feature

extraction to select the best features, and to build a

classification model. Our model is compared against other

feature-based approaches for malicious code detection, and

found to be more efficient in terms of detection accuracy and

false alarm rate.

Keywords Disassembly . Feature extraction . Malicious

executable . n-gram analysis

1 Introduction

Malicious code is a great threat to computers and computer

society. Numerous kinds of malicious codes wander in the

wild. Some of them are mobile, such as worms, and spread

through internet causing damage to millions of computers

worldwide. Other kinds of malicious codes are static, such

as viruses, but sometimes deadlier than its mobile counter-

part. Malicious code writers usually exploit software

vulnerabilities to attack host machines. A number of

techniques have been devised by researchers to counter

these attacks. Unfortunately, the more successful the

researchers become in detecting and preventing the attacks,

the more sophisticated malicious code appears in the wild.

Thus, the battle between malicious code writers and

researchers is virtually never-ending.

One popular technique followed by the anti-virus

community to detect malicious code is “signature detec-

tion.” This technique matches the executables against a

unique telltale string or byte pattern called signature, which

is used as an identifier for a particular malicious code.

Although signature detection techniques are being used

widely, they are not effective against zero-day attacks (new
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malicious code), polymorphic attacks (different encryptions

of the same binary), or metamorphic attacks (different code

for the same functionality). So, there has been a growing

need for fast, automated, and efficient detection techniques

that are robust to these attacks. As a result, many automated

systems (Newsome et al. 2005; Kolter and Maloof 2004;

Golbeck and Hendler 2004; Newman et al. 2002) have been

developed.

In this paper we describe our novel hybrid feature

retrieval (HFR) model that can detect malicious executables

efficiently. This is an extension to our previous work

(Masud et al. 2007b). It extracts three different kinds of

features from the executables at different levels of abstrac-

tion and combines them into one feature set, called the

hybrid feature set (HFS). These features are used to train a

classifier (e.g. support vector machine (SVM), decision tree

etc.), which is applied to detect malicious executables.

These features are: (a) binary n-gram features, (b) derived

assembly features (DAFs), and (c) dynamic link library

(DLL) call features. Each binary n-gram feature is actually

a sequence of n consecutive bytes in a binary executable,

extracted using a technique explained in Section 3.1. Binary

n-grams reveal the distinguishing byte patterns between the

benign and malicious executables. Each DAF is a sequence

of assembly instructions in an executable, and corresponds

to one binary n-gram feature. DAFs reveal the distinctive

instruction usage patterns between the benign and mali-

cious executables. They are extracted from the disas-

sembled executables using our assembly feature retrieval

(AFR) algorithm, explained in Section 4.2. It should be

noted that DAF is different from assembly n-gram features

mentioned in Section 3.2. Assembly n-gram features are not

used in HFS because of our findings that DAF performs

better than them. Each DLL call feature actually corre-

sponds to a DLL function call in an executable, extracted

from the executable header as explained in Section 3.3.

These features reveal the distinguishing DLL call patterns

between the benign and malicious executables. We show

empirically that the combination of these three features is

always better than any single feature in terms of classifi-

cation accuracy.

Our work focuses on expanding features at different

levels of abstraction, rather than using more features at a

single level of abstraction. There are two main reasons

behind this. First, the number of features at a given level of

abstraction (e.g. binary) is overwhelmingly large. For

example, in our larger dataset, we obtain 200 million

binary n-gram features. Training with this large number of

features is way beyond the capabilities of any practical

classifier. That is why we limit the number of features at a

given level of abstraction to an applicable range. Second,

we empirically observe the benefit of adding more levels of

abstraction to the combined feature set (i.e., HFS). HFS

combines features at three levels of abstraction, namely,

binary executables, assembly programs, and system API

calls. We show that this combination has higher detection

accuracy and lower false alarm rate than the features at any

single level of abstraction.

Our technique is related to knowledge-management

because of several reasons. First, we apply our knowledge

of binary n-gram features to obtain DAFs. Second, we

apply the knowledge obtained from the feature extraction

process to select the best features. This is accomplished by

extracting all possible binary n-grams from the training

data, applying the statistical knowledge corresponding to

each n-gram (i.e., its frequency in malicious and benign

executables) to compute its information gain (Mitchell

1997), and selecting the best S of them. Finally, we apply

another statistical knowledge (presence/absence of a feature

in an executable) obtained from the feature-extraction

process to train classifiers.

Our research contributions are as follows. First, we

propose and implement our HFR model, which com-

bines three kinds of features mentioned above. Second,

we apply a novel idea to extract assembly instruction

features using binary n-gram features, implemented with

the AFR algorithm. Third, we propose and implement a

scalable solution to the n-gram feature extraction and

selection problem in general. Our solution works well

with limited memory, and significantly reduces running

time by applying efficient and powerful data structures

and algorithms. Thus, it is scalable to large collection of

executables (in the order of thousands), even with limited

main memory and processor speed. Finally, we compare

our results against Kolter & Maloof’s results (Kolter and

Maloof 2004), which uses only binary n-gram feature,

and show that our method achieves better accuracy. We

also report the performance/cost tradeoff of our method

against Kolter & Maloof’s method. It should be pointed

out here that our main contribution is an efficient feature

extraction technique, not a classification technique. We

empirically prove that the combined feature set (i.e.,

HFS) extracted using our algorithm performs better than

other individual feature sets (such as binary n-grams)

regardless of the classifier (e.g. SVM / decision tree)

used.

The rest of the paper is organized as follows: Section 2

discusses related work, Section 3 presents and explains

different kinds of n-gram feature extraction techniques,

Section 4 describes the HFR model, Section 5 discusses our

experiments and analyzes results, Section 6 concludes with

future research directions.
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2 Related work

There have been significant research works in recent years

to detect malicious executables. There are two mainstream

techniques to automate the detection process: behavioral

and content-based. The behavioral approach is primarily

applied to detect mobile malicious code. This technique is

applied to analyze network traffic characteristics such as

source-destination ports/IP addresses, various packet level /

flow level statistics, and application level characteristics

such as email attachment type, attachment size etc.

Examples of behavioral approaches include social network

analysis (Golbeck and Hendler 2004; Newman et al. 2002)

and statistical analysis (Schultz et al. 2001a). A data mining

based behavioral approach for detecting email worms has

been proposed by Masud et al. (2007a). Garg et al. (2006)

apply feature-extraction technique along with machine

learning for masquerade detection. They extract features

from user behavior in GUI-based systems, such as mouse

speed, number of clicks per session and so on. Then the

problem is modeled as a binary classification problem, and

trained and tested with SVM. Our approach is content-

based, rather than behavioral.

The content-based approach analyzes the content of

the executable. Some of them try to automatically

generate signatures from network packet payloads.

Examples are EarlyBird (Singh et al. 2003), Autograph

(Kim and Karp 2004), and Polygraph (Newsome et al.

2005). In contrast, our method does not require signature

generation or signature matching. Some other content-

based techniques extract features from the executables and

apply machine learning to detect malicious executables.

Examples are Schultz et al. (2001b) and Kolter and

Maloof (2004). Schultz et al. (2001b) extract DLL call

information using GNU Bin-Utils (Cygnus 1999) and

character strings using GNU strings, from the header of

Windows PE executables. Also, they use byte sequences

as features. We also use byte sequences and DLL call

information, but we also apply disassembly and use

assembly instructions as features. Besides, we extract

byte patterns of various lengths (from 2 to 10 bytes),

whereas they extract only 2-byte length patterns. A similar

work is done by Kolter et al. (Kolter and Maloof 2004).

They extract binary n-gram features from the binary

executables and apply them to different classification

methods, and report accuracy. Our model is different from

(Kolter and Maloof 2004) in that we extract not only the

binary n-grams but also assembly instruction sequences

from the disassembled executables, and gather DLL call

information from the program headers. We compare our

model’s performance only with (Kolter and Maloof 2004),

since they report higher accuracy than (Schultz et al.

2001b).

3 Feature extraction using n-gram analysis

Before going into details of the process, we illustrate a code

snippet in Fig. 1 from the Email-Worm “Win32.Ainjo.e,”

and use it as a running example throughout the paper.

Feature extraction using n-gram analysis involves

extracting all possible n-grams from the given dataset

(training set), and selecting the best n-grams among them.

Each such n-gram is a feature. We extend the notion of

n-gram from bytes to assembly instructions, and DLL

function calls. That is, an n-gram may be either a sequence

of n bytes, n assembly instructions, or n DLL function calls,

depending on whether we are to extract features from

binary executables, assembly programs, or DLL call

sequences, respectively. Before extracting n-grams, we

preprocess the binary executables by converting them to

hexdump files and assembly program files, as explained

shortly.

3.1 Binary n-gram feature

Here the granularity level is a byte. We apply the UNIX

‘hexdump’ utility to convert the binary executable files into

text files, mentioned henceforth as ‘hexdump files,’

containing the hexadecimal numbers corresponding to each

byte of the binary. This process is performed to ensure safe

and easy portability of the binary executables. The feature

extraction process consists of two phases: (a) feature

collection, and (b) feature selection, both of which are

explained in the following subsections.

Fig. 1 Code snippet and DLL call info from the email-worm “Win32.

Ainjo.e”
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3.1.1 Feature collection

We collect binary n-grams from the ‘hexdump’ files. This is

illustrated in example-I.

The basic feature collection process runs as follows. At

first, we initialize a list L of n-grams to empty. Then we

scan each hexdump file by sliding an n-byte window. Each

such n-byte sequence is an n-gram. Each n-gram g is

associated with two values: p1 and n1, denoting the total

number of positive instances (i.e., malicious executables)

and negative instances (i.e., benign executables), respec-

tively, that contain g. If g is not found in L, then g is added

to L, and p1 and n1 are updated as necessary. If g is already

in L, then only p1 and n1 are updated. When all hexdump

files have been scanned, L contains all the unique n-grams in

the dataset along with their frequencies in the positive and

negative instances. There are several implementation issues

related to this basic approach. First, the total number of

n-grams may be very large. For example, the total number of

10-g in our second dataset (see Section 5.1) is 200 million. It

may not possible to store all of them in computer’s main

memory. To solve this problem, we store the n-grams in a

disk file F. Second, if L is not sorted, then a linear search is

required for each scanned n-gram to test whether it is already

in L. If N is the total number of n-grams in the dataset, then

the time for collecting all the n-grams would be O (N2), an

impractical amount of time when N=200 million.

In order to solve the second problem, we use a data

structure called Adelson Velsky Landis (AVL) tree (GoodRich

and Tamassia 2006) to store the n-grams in memory. An

AVL tree is a height-balanced binary search tree. This tree

has a property that the absolute difference between the

heights of the left sub-tree and the right sub-tree of any node

is at most one. If this property is violated during insertion or

deletion, a balancing operation is performed, and the tree

regains its height-balanced property. It is guaranteed that

insertions and deletions are performed in logarithmic time.

So, in order to insert an n-gram in memory, we now need

only O (log2 (N)) searches. Thus, the total running time is

reduced to O (Nlog2 (N)), making the overall running time

about 5 million times faster for N as large as 200 million.

Our feature collection algorithm Extract_Feature implements

these two solutions. It is illustrated in Algorithm 1.

Description of the algorithm: the for loop at line 3 runs for

each hexdump file in the training set. The inner while loop at

line 4 gathers all the n-grams of a file and adds it to the AVL

tree if it is not already there. At line 8, a test is performed to

see whether the tree size has exceeded the memory limit (a

threshold value). If it exceeds and F is empty, then we save

the contents of the tree in F (line 9). If F is not empty, then

we merge the contents of the tree with F (line 10). Finally,

we delete all the nodes from the tree (line 12).

Time Complexity,T ¼ time n! gram reading & insertingð
in treeÞ þ time merging with diskð Þ ¼ O B log2 Kð Þ þ O Nð Þ,

where B is the total size of the training data in bytes, K is the

maximum #of nodes of the tree (i.e., threshold), and N is the

total number of n-grams collected. Space Complexity: O (K),

where K is defined as above.

3.1.2 Feature selection

If the total number of extracted features is very large, it may

not possible to use all of them for training because of

several reasons. First, the memory requirement may be

impractical. Second, training may be too slow. Third, a

classifier may become confused with a large number of

features, because most of them would be noisy, redundant

or irrelevant. So, we are to choose a small, relevant and

useful subset of features. We choose information gain (IG)

as the selection criterion, because it is one of the best

criteria used in literature for selecting the best features.

IG can be defined as a measure of effectiveness of an

attribute (i.e., feature) in classifying a training data

(Mitchell 1997). If we split the training data based on the

values of this attribute, then IG gives the measurement of

the expected reduction in entropy after the split. The more

an attribute can reduce entropy in the training data, the
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better the attribute is in classifying the data. IG of an

attribute A on a collection of instances I is given by Eq. 1:

Gain I ;Að Þ % Entropy Ið Þ !
X

V2values Að Þ

pv þ nv

pþ n
Entropy Ivð Þ ð1Þ

Where

values

(A)

is the set of all possible values for attribute A

Iv is the subset of I where all instances have the

value of A = v

p is the total number of positive instances in I

n is the total number of negative instances in I

pv is the total number of positive instances in Iv,
nv is the total number of negative instances in Iv

In our case, each attribute has only two possible values,

i.e., v ∈{0, 1}. If an attribute A (i.e. an n-gram) is present in

an instance X, then XA=1, otherwise it is 0. Entropy of I is

computed using the following Eq. 2:

Entropy Ið Þ ¼ !
p

pþ n
log2

p

pþ n

! "

!
n

pþ n
log2

n

pþ n

! "

ð2Þ

Where I, p, and n are as defined above. Substituting Eq. 2

in Eq. 1 and letting t ¼ nþ p we get,
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Now, the next problem is to select the best S features

(i.e., n-grams) according to IG. One naïve approach is to

sort the n-grams in non-increasing order of IG and selecting

the top S of them, which requires O (Nlog2N) time and O

(N) main memory. But this selection can be more efficiently

accomplished using a heap that requires O (Nlog2S) time

and O(S) main memory. For S=500 and N=200 million,

this approach is more than 3 times faster and requires

400,000 times less main memory. A heap is a balanced

binary tree with the property that the root of any sub-tree

contains the minimum (maximum) element in that sub-tree.

We use a min-heap that always has the minimum value at

its root. Algorithm 2 sketches the feature selection

algorithm. At first, the heap is initialized to empty. Then

the n-grams (along with their frequencies) are read from

disk (line 2) and inserted into the heap (line 5) until the

heap size becomes S. After the heap size becomes equal to

S, we compare the IG of the next n-gram g against the IG of

the root. If IG (root)=IG (g) then g is discarded (line 6)

since root has the minimum IG. Otherwise, root is replaced

with g (line 7). Finally, the heap property is restored (line 9).

The process terminates when there are no more n-grams in the

disk. After termination, we have the S best n-grams in the

heap.

The insertion and restoration takes only O (log2(S)) time.

So, the total time required is O (Nlog2S), with only O(S)

main memory. We denote the best S binary features selected

using IG criterion as the Binary Feature Set (BFS).

3.2 Assembly n-gram feature

In this case, the level of granularity is an assembly instruction.

First, we disassemble all the binary files using a disassembly

tool called PEDisassem (Windows P.E. 1998). It is used to

disassemble Windows Portable Executable (P.E.) files.

Besides generating the assembly instructions with opcode

and address information, PEDisassem provides useful

information like list of resources (e.g. cursor) used, list of

DLL functions called, list of exported functions, and list of

strings inside the code block and so on. In order to extract

assembly n-gram features, we follow a method similar to the

binary n-gram feature extraction. First we collect all possible

n-grams, i.e., sequences of n consecutive assembly instruc-

tions, and select the best S of them according to IG. We

mention henceforth this selected set of features as Assembly

Feature Set (AFS). We face the same difficulties as in binary

n-gram extraction, such as limited memory and slow

running time, and solve them in the same way. Example-II

illustrates the assembly n-gram features.

Inf Syst Front (2008) 10:33–45 37



We adopt a standard representation of assembly instruc-

tions that has the following format: name.param1.param2.

Name is the instruction name (e.g., mov), param1 is the first

parameter, and param2 is the second parameter. Again, a

parameter may be one of {register, memory, constant}. So,

the second instruction above: “or byte [eax+14002700], dl”

becomes “or.memory.register” in our representation.

3.3 DLL function call feature

Here the granularity level is a DLL function call. An

n-gram of DLL function call is a sequence of n DLL

function calls (possibly with other instructions in between

two successive calls) in an executable. We extract the

information about DLL function calls made by a program

from the header of the disassembled file. This is illustrated

in Fig. 1. In our experiments, we use only 1-grams of DLL

calls, since the higher grams have poorer performance. We

enumerate all the DLL function names that have been used

by each of the benign and malicious executables, and select

the best S of them using information gain. We will mention

this feature set as DLL-call feature set (DFS).

4 The hybrid feature retrieval model

The HFR Model extracts and combines three different

kinds of features, as illustrated in Fig. 2. HFR consists of

different phases and components. The feature extraction

components have already been discussed in details. Below

is a brief description of the model.

4.1 Description of the model

The HFR Model consists of two phases: a training phase

and a test phase. The training phase is shown in Fig. 2a,

and the test phase is shown in Fig. 2b. In the training

phase we extract binary n-gram features (BFS) and DLL

call features (DFS) using the approaches explained in

Sections 3.1 and 3.3, respectively. We then apply AFR

algorithm (to be explained shortly) to retrieve the derived

assembly features (DAFs) that represent the selected

binary n-gram features. These three kinds of features are

combined into the hybrid feature set, or HFS in short.

Please note that DAF is different from assembly n-gram

features (i.e., AFS).

AFS are not used in HFS because of our findings

that DAF performs better than them. We compute the

binary feature vector corresponding to the HFS using

the technique explained in Section 4.3, and train a

classifier using SVM, boosted decision tree, and other

classification methods. In the test phase, we scan each test

instance and compute the feature vector corresponding to

the HFS. This vector is tested against the classifier. The

classifier outputs the class prediction {benign, malicious}

of the test file.
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4.2 The assembly feature retrieval (AFR) algorithm

The AFR algorithm is used to extract assembly instruction

sequences (i.e., DAFs) corresponding to the binary n-gram

features. The main idea is to obtain the complete assembly

instruction sequence of a given binary n-gram feature. The

rationale behind using DAF is as follows. A binary n-gram

may represent partial information, such as part(s) of one or

more assembly instructions or a string inside the code block.

We apply AFR algorithm to obtain the complete instruction or

instruction sequence (i.e., a DAF) corresponding to the partial

one. Thus DAF represents more complete information, which

should be more useful in distinguishing the malicious and

benign executables. However, binary n-grams are still

required because they also contain other information like

string data, or important bytes at the program header. AFR

algorithm consists of several steps. In the first step, a linear

address matching technique is applied as follows. The offset

address of the n-gram in the hexdump file is used to find

instructions at the same offset at the corresponding assembly

program file. Based on the offset value, one of the three

situations may occur:

1. The offset is before program entry point, so there is no

corresponding assembly code for the n-gram. We refer

to this address as address before entry point (ABEP).

2. There is some data, but no code at that offset. We refer

to this address as DATA.

3. There is some code at that offset. We refer to this

address as CODE. If this offset is in the middle of an

instruction, then we take the whole instruction and

consecutive instructions within n bytes from the

instruction.

In the second step, the best CODE instance is selected

among all CODE instances. We apply a heuristic to find the

best sequence, called the most distinguishing instruction

sequence (MDIS) heuristic. According to this heuristic, we

choose the instruction sequence that has the highest IG. The

AFR algorithm is sketched in Algorithm 3. A comprehen-

sive example of the algorithm is illustrated in Appendix A.

Description of the algorithm: line 1 initializes the lists

that would contain the assembly sequences. The for loop in

line 2 runs for each hexdump file. Each hexdump file is

scanned and n-grams are extracted (line 4–5). If any of

these n-grams are in the BFS (line 6–7), then we read the

instruction sequence from the corresponding assembly

program file at the corresponding address (line 8–10). This

sequence is added to the appropriate list (line 12). In this

way, we collect all the sequences corresponding to each

n-gram in the BFS. In phase II, we select the best sequence

in each n-gram list using IG (lines 18–21). Finally, we

return the best sequences, i.e., DAFs.

Time complexity of this algorithm is O (nBlog2S), where

B is the total size of training set in bytes, S is the total #of

selected binary n-gram, and n is size of each n-gram in

bytes. Space complexity is O (SC), where S is defined as

above and C is the average #of assembly sequences found

per binary n-gram. The running time and memory require-

ments of all three algorithms are summarized in

Appendix B.

4.3 Feature vector computation and classification

Each feature in a feature set (e.g., HFS, BFS) is a binary

feature, meaning, its value is either 1 or 0. If the feature is

present in an instance (i.e. an executable), then its value is

1, otherwise its value is 0. For each training (or testing)

instance, we compute a feature vector, which is a bit vector

consisting of the feature-values of the corresponding feature

set. For example, if we want to compute the feature vector

VBFS corresponding to BFS of a particular instance I, then

for each feature f∈BFS we search f in I. If f is found in I,

then we set VBFS[f] (i.e., the bit corresponding to f) to 1,

otherwise, we set it to 0. In this way, we set/reset each bits

in the feature vector. These feature vectors are used by the

classifiers for training/testing.

We apply SVM, Naïve Bayes (NB), Boosted decision

tree, and other classifiers for the classification task. SVM

can perform either linear or non-linear classification. The

linear classifier proposed by Vladimir Vapnik creates a
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hyperplane that separates the data points into two classes

with the maximum-margin. A maximum-margin hyper-

plane is the one that splits the training examples into two

subsets, such that the distance between the hyperplane and

its closest data point(s) is maximized. A non-linear SVM

(Boser et al. 2003) is implemented by applying kernel trick

to maximum-margin hyper-planes. The feature space is

transformed into a higher dimensional space, where the

maximum-margin hyperplane is found. A decision tree

contains attribute-tests at each internal node and a decision

at each leaf node. It classifies an instance by performing

attribute tests from root to a decision node. Decision tree is

a rule-based classifier. Meaning, we can obtain human-

readable classification rules from the tree. J48 is the

implementation of C4.5 Decision Tree algorithm. C4.5 is

an extension to the ID3 algorithm invented by Quinlan. A

boosting technique called Adaboost combines multiple

classifiers by assigning weights to each of them according

to their classification performance (Freund and Schapire

1996). The algorithm starts by assigning equal weights to

all training samples, and a model is obtained from this

training data. Then each misclassified example’s weight is

increased, and another model is obtained from this new

training data. This is iterated for a specified number of

times. During classification, each of these models is applied

on the test data, and a weighted voting is performed to

determine the class of the test instance. We use the

AdaBoost.M1 algorithm (Freund and Schapire 1996) on

NB, and J48. We only report SVM, and Boosted J48 results

because they have the best results. It should be noted that

we do not have any preference of any of these two

classifiers over the other. We report these accuracies in

the results section (Section 5.3).

5 Experiments

We design our experiments to run on two different datasets.

Each dataset has different sizes and distributions of benign

and malicious executables. We generate all kinds of n-gram

features (e.g. BFS, AFS, DFS) using the techniques

explained in Section 3. Notice that the BFS corresponds

to the features extracted by Kolter and Maloof’s method

(Kolter and Maloof 2004). We also generate the DAF and

HFS using our model as explained in Section 4. We test the

accuracy of each of the feature sets applying a three-fold

cross validation using classifiers such as SVM, decision

tree, Naïve Bayes, Bayes Net and Boosted decision tree.

Among these classifiers, we obtain the best results with

SVM and Boosted decision tree, reported in the results

section (Section 5.3). We do not report other classifier

results due to space limitations. In addition to this, we

compute the average accuracy, false positive and false

negative rate, and receiver operating characteristic (ROC)

graphs (using techniques in Fawcett 2003). We also

compare the running time and performance/cost trade-off

between HFS and BFS.

5.1 Dataset

We have two non-disjoint datasets. The first dataset (dataset1)

contains a collection of 1,435 executables, 597 of which are

benign and 838 are malicious. The second dataset (dataset2)

contains 2,452 executables, having 1,370 benign and 1,082

malicious executables. So, the distribution of dataset1 is

benign=41.6%, malicious=58.4%, and that of dataset2 is

benign=55.9%, malicious=44.1%. This distribution was

chosen intentionally to evaluate the performance of the feature

sets in different scenarios. We collect the benign executables

from different Windows XP, and Windows 2000 machines,

and collect the malicious executables from (VX-Heavens

2006), which contains a large collection of malicious

executables. The benign executables contain various appli-

cations found at the Windows installation folder (e.g. “C:

\Windows”), as well as other executables in the default

program installation directory (e.g., “C:\Program Files”).

Malicious executables contain Viruses, Worms, Trojans, and

Back-doors. We select only the Win32 Portable Executables

(P.E.) in both the cases. We would like to experiment with

the ELF executables in future.

5.2 Experimental setup

Our implementation is developed in Java with JDK 1.5. We

use the libSVM library (LIBSVM 2006) for running SVM,

and Weka ML toolbox (WEKA 2006) for running Boosted

decision tree and other classifiers. For SVM, we run C-SVC

with a Polynomial kernel; using gamma=0.1, and epsilon=

1.0E−12. For Boosted decision tree we run 10 iterations of the

AdaBoost algorithm on the C4.5 decision tree algorithm,

Table 1 Classification accuracy (%) of SVM on different feature sets

n Dataset1 Dataset2

HFS BFS AFS HFS BFS AFS

1 93.4 63.0 88.4 92.1 59.4 88.6

2 96.8 94.1 88.1 96.3 92.1 87.9

4 96.3 95.6 90.9 97.4 92.8 89.4

6 97.4 95.5 87.2 96.9 93.0 86.7

8 96.9 95.1 87.7 97.2 93.4 85.1

10 97.0 95.7 73.7 97.3 92.8 75.8

Avg 96.30 89.83 86.00 96.20 87.25 85.58

Avga 96.88 95.20 85.52 97.02 92.82 84.98

a Average accuracy excluding 1-gram
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called J48. We set the parameter S (# of selected features) to

500, since it is the best value found in our experiments. Most

of our experiments are run on two machines: a Sun Solaris

machine with 4 GB main memory and 2 GHz clock speed,

and a LINUX machine with 2 GB main memory and

1.8 GHz clock speed. The reported running times are based on

the latter machine. The disassembly and hex-dump are done

only once for all machine executables and the resulting files

are stored. We then run our experiments on the stored files.

5.3 Results

In this sub-section, we first report and analyze the results

obtained by running SVM on the dataset. Later, we show

the accuracies of Boosted J48. Since the results from

Boosted J48 are almost the same as SVM, we do not report

the analyses based on Boosted J48.

Accuracy Table 1 shows the accuracy of SVM on different

feature-sets. The columns headed by HFS, BFS, and AFS

represent the accuracies of the Hybrid Feature Set (our

method), Binary Feature Set (Kolter and Maloof’s feature

set) and Assembly Feature Set, respectively. Note that the

AFS is different from the DAF (i.e., derived assembly

features) that has been used in the HFS (see Section 4.1 for

details). Table 1 reports that the classification accuracy of

HFS is always better than other models, on both datasets. It

is interesting to note that the accuracies for 1-gram BFS are

very low in both datasets. This is because 1-gram is only a

1-byte long pattern, having only 256 different possibilities.

Thus, this pattern is not useful at all in distinguishing the

malicious executables from the normal, and may not be

used in a practical application. So, we exclude the 1-gram

accuracies while computing the average accuracies (i.e., the

last row).

Dataset1 Here the best accuracy of the hybrid model is for

n=6, which is 97.4, and is the highest among all feature

sets. On average, the accuracy of HFS is 1.68% higher than

that of BFS, and 11.36% higher than that of AFS.

Accuracies of AFS are always the lowest. One possible

reason behind this poor performance is that AFS considers

only the CODE (see Section 4.2) part of the executables.

So, AFS misses any distinguishing pattern carried by the

ABEP or DATA parts, and as a result, the extracted features

have poorer performance. Moreover, the accuracy of AFS

greatly deteriorates for n=10. This is because longer

sequences of instructions are rarer in either class of

executables (malicious/benign), so these sequences have

less distinguishing power. On the other hand, BFS considers

all parts of the executable, achieving higher accuracy.

Finally, HFS considers DLL calls, as well as BFS and

DAF. So, HFS has better performance than BFS.

Dataset2 Here the differences between the accuracies of

HFS and BFS are greater than that of dataset1. The average

accuracy of HFS is 4.2% higher than that of BFS.

Accuracies of AFS are again the lowest. It is interesting

to note that HFS has an improved performance over BFS

(and AFS) in dataset2. Two important conclusions may be

derived from this observation. First, dataset2 is much larger

than dataset1, having more diverse set of examples. Here

HFS performs better than dataset1, whereas BFS performs

worse than dataset1. This implies that HFS is more robust

than BFS in a diverse and larger set of instances. Thus,

HFS is more applicable than BFS in a large, diverse corpus

of executables. Second, dataset2 has more benign execut-

ables than malicious, whereas dataset1 has less benign

executables. This distribution of dataset2 is more likely in a

real world, where benign executables outnumber malicious

executables. This implies that HFS is likely to perform

better than BFS in a real-world scenario, having larger

number of benign executables in the dataset.

Statistical significance test We also perform a pair-wise

two-tailed t-test on the HFS and BFS accuracies to test

whether the differences between their accuracies are

statistically significant. We exclude 1-gram accuracies from

this test for the reason explained above. The result of the

t-test is summarized in Table 2. The t-value shown in this

table is the value of t obtained from the accuracies. There

are (5+5−2) degrees of freedom, since we have five

observations in each group, and there are two groups (i.e.,

HFS and BFS). Probability denotes the probability of

rejecting the NULL hypothesis (that there is no difference

between HFS and BFS accuracies), while p-value denotes

the probability of accepting the NULL hypothesis. For

dataset1, the probability is 99.65%, and for dataset2, it is

100.0%. Thus, we conclude that the average accuracy of

HFS is significantly higher than that of BFS.

DLL call feature Here we report the accuracies of the DLL

function call features (DFS). The 1-gram accuracies are:

92.8% for dataset1 and 91.9% for dataset2. The accuracies

for higher grams are less than 75%, so we do not report

them. The reason behind this poor performance is possibly

that there are no distinguishing call-sequences that can

identify the executables as malicious or benign.

Table 2 Pair-wise two-tailed t-test results comparing HFS and BFS

accuracies

DataSet1 DataSet2

t-value 8.9 14.6

Degrees of freedom 8 8

Probability 0.9965 1.00

p-value 0.0035 0.0000
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ROC curves ROC curves plot the true positive rate against

the false positive rates of a classifier. Figure 3 shows ROC

curves of dataset1 for n=6 and dataset2 for n=4 based on

SVM testing. ROC curves for other values of n have similar

trends, except for n=1, where AFS performs better than

BFS. It is evident from the curves that HFS is always

dominant (i.e. has larger area under the curve) over the

other two and it is more dominant in dataset2. Table 3

reports the area under the curve (AUC) for the ROC curves

of each of the features sets. A higher value of AUC

indicates a higher probability that a classifier will predict

correctly. Table 3 shows that the AUC for HFS is the

highest, and it improves (relative to other two) in dataset2.

This also supports our hypothesis that our model will

perform better in a more likely real-world scenario, where

benign executables occur more frequently.

False positive and false negative Table 4 reports the false

positive and false negative rates (in percentage) for each

feature set based on SVM output. The last row reports the

average. Again, we exclude the 1-gram values from the

average. Here we see that in dataset1, the average false

positive rate of HFS is 4.9%, which is the lowest. In

dataset2, this rate is even lower (3.2%). False positive rate

is a measure of false alarm rate. Thus, our model has the

lowest false alarm rate. We also observe that this rate

decreases as we increase the number of benign examples.

This is because the classifier gets more familiar with benign

executables and misclassifies fewer of them as malicious.

We believe that a large collection of training set with a

larger portion of benign executables would eventually

diminish false positive rate towards zero. The false negative

rate is also the lowest for HFS as reported in Table 4.

Running Time We compare in Table 5 the running times

(feature extraction, training, testing) of different kind of

features (HFS, BFS, AFS) for different values of n. Feature

extraction time for HFS and AFS includes the disassembly

time, which is 465 s (in total) for dataset1, and 865 s (in

total) for dataset2. Training time is the sum of feature

extraction time, feature-vector computation time, and SVM

training time. Testing time is the sum of disassembly time

(except BFS) feature-vector computation time, and SVM

classification time. Training and testing times based on

Boosted J48 have almost similar characteristics, so we do

not report them. Table 5 also reports the cost factor as a

ratio of time required for HFS relative to BFS. The column

cost factor shows this comparison. The average feature-

extraction times are computed by excluding the 1- and 2-

gram, since these grams are unlikely to be used in practical

applications. The boldface cells in the table are of particular

interest to us. From the table we see that the running times

for HFS training and testing on dataset1 are 1.17 and 4.87

times higher than those of BFS, respectively. For dataset2,

these numbers are 1.08 and 4.5, respectively. The average

throughput for HFS is found to be 0.6 MB/sec (in both

datasets), which may be considered as near real-time

performance. Finally, we summarize the cost/performance

trade-off in Table 6. The column Performance improvement

reports the accuracy improvement of HFS over BFS. The

cost factors are shown in the next two columns. If we drop

the disassembly time from testing time (considering that

Table 4 False positive and false negative rates on different feature sets

n Dataset1 Dataset2

HFS BFS AFS HFS BFS AFS

1 8.0/5.6 77.7/7.9 12.4/11.1 7.5/8.3 65.0/9.8 12.8/9.6

2 5.3/1.7 6.0/5.7 22.8/4.2 3.4/4.1 5.6/10.6 15.1/8.3

4 4.9/2.9 6.4/3.0 16.4/3.8 2.5/2.2 7.4/6.9 12.6/8.1

6 3.5/2.0 5.7/3.7 24.5/4.5 3.2/2.9 6.1/8.1 17.8/7.6

8 4.9/1.9 6.0/4.1 26.3/2.3 3.1/2.3 6.0/7.5 19.9/8.6

10 5.5/1.2 5.2/3.6 43.9/1.7 3.4/1.9 6.3/8.4 30.4/16.4

Avg 5.4/2.6 17.8/4.7 24.4/3.3 3.9/3.6 16.1/8.9 18.1/9.8

Avga 4.9/2.0 5.8/4.1 26.8/1.7 3.2/2.7 6.3/8.1 19.2/17.8

a Average value excluding 1-gram

Table 3 Area under the ROC curve on different feature sets

n Dataset1 Dataset2

HFS BFS AFS HFS BFS AFS

1 0.9767 0.7023 0.9467 0.9666 0.7250 0.9489

2 0.9883 0.9782 0.9403 0.9919 0.9720 0.9373

4 0.9928 0.9825 0.9651 0.9948 0.9708 0.9515

6 0.9949 0.9831 0.9421 0.9951 0.9733 0.9358

8 0.9946 0.9766 0.9398 0.9956 0.9760 0.9254

10 0.9929 0.9777 0.8663 0.9967 0.9700 0.8736

Avg 0.9900 0.9334 0.9334 0.9901 0.9312 0.9288

Avga 0.9927 0.9796 0.9307 0.9948 0.9724 0.9247

a Average value excluding 1-gram

Fig. 3 ROC curves for different feature sets in dataset1 (left), and

dataset2 (right)
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disassembly is done offline), then the testing cost factor

diminishes to 1.0 for both dataset. It is evident from Table 6

that the performance/cost trade-off is better for dataset2

than dataset1. Again, we may infer that our model is likely

to perform better in a larger and more realistic dataset. The

main bottleneck of our system is disassembly cost. The

testing cost factor is higher because here larger proportion

of time is used up in disassembly. We believe that this

factor may be greatly reduced by optimizing the disassem-

bler, and considering that disassembly can be done offline.

Training & Testing with Boosted J48 We also train and test

with this classifier and report the classification accuracies

for different features and different values of n in Table 7.

The second last row (Avg) of Table 7 is the average of 2- to

10-g accuracies. Again, for consistency, we exclude 1-gram

from the average. We also include the average accuracies of

SVM (from last row of Table 1) in the last row of Table 7

for ease of comparison. We would like to point out some

important observations regarding this comparison. First, the

average accuracies of SVM and Boosted J48 are almost the

same, being within 0.4% of each other (for HFS). There is

no clear winner between these two classifiers. So, we may

use any of these classifiers for our model. Second,

accuracies of HFS are again the best among all three.

Besides, HFS has 1.84% and 3.6% better accuracies than

BFS in dataset1 and dataset2, respectively. This result also

justifies our claim that HFS is a better feature set than BFS,

irrespective of the classifier used.

6 Conclusion

Our HFR model is a novel idea in malicious code detection.

It extracts useful features from disassembled executables

using the information obtained from binary executables. It

then combines the assembly features with other features

like DLL function calls and binary n-gram features. We

have addressed a number of difficult implementation issues

and provided efficient, scalable and practical solutions. The

difficulties that we face during implementation are related

to memory limitations and long running times. By using

Table 6 Performance/cost trade-off between HFS and BFS

Performance

improvement (%)

(HFS–BFS) /BFS

Training cost

factor (HFS/

BFS)

Testing cost

factor (HFS/

BFS)

Dataset1 1.73 1.17 4.87

Dataset2 4.52 1.08 4.5

Table 7 Classification accuracy (%) of boosted J48 on different

feature sets

N Dataset1 Dataset2

HFS BFS AFS HFS BFS AFS

1 93.9 64.1 91.3 93.5 58.8 90.2

2 96.4 93.2 89.4 97.1 92.7 85.1

4 96.3 95.4 92.1 97.2 93.6 87.5

6 96.3 95.3 87.8 97.6 93.6 85.4

8 96.7 94.1 89.1 97.6 94.3 83.7

10 96.6 95.1 77.1 97.8 95.1 82.6

Avga (Boosted

J48)

96.46 94.62 87.1 97.46 93.86 84.86

Avgb(SVM) 96.88 95.20 85.52 97.02 92.82 84.98

a Average accuracy excluding 1-gram
b Average accuracy for SVM (from Table 1)

Table 5 Running times (in seconds)

n Dataset1 Dataset2

HFS BFS AFS Cost factora HFS BFS AFS Cost factora

Feature extraction 1 498.41 135.94 553.2 3.67 841.67 166.87 908.42 5.04

2 751.93 367.46 610.85 2.05 1,157.5 443.99 949.7 2.61

4 1,582.21 1,189.65 739.51 1.33 3,820.7 3,103.14 1,194.4 1.23

6 2,267.94 1,877.6 894.26 1.21 8,010.24 7,291.4 1,519.56 1.1

8 2,971.9 2,572.26 1,035.06 1.16 11,736. 11,011.67 1,189.01 1.07

10 3,618.31 3,223.21 807.85 1.12 15,594. 14,858.68 2,957 1.05

Avgb 2,610.09 2,215.68 869.17 1.18 9,790.6 9,066.22 1,714.99 1.08

Training Avgc 2,654.68 2,258.86 910.68 1.18 9,857.85 9,134.36 1,782.8 1.08

Testing Avgc 195.25 40.09 194.9 4.87 377.89 83.91 348.35 4.5

Testing/MB MB 1.74 0.36 1.74 4.87 1.57 0.35 1.45 4.5

Throughput(MB/s)) 0.6 2.8 0.6 – 0.64 2.86 0.69 –

a Ratio of time required for HFS to time required for BFS
b Average feature extraction times excluding 1- and 2-gram
c Average training/testing times excluding 1- and 2-gram
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efficient data structures, algorithms and disk I/O, we are

able to implement a fast, scalable and robust system for

malicious code detection. We run our experiments on two

datasets with different class distribution, and show that a

more realistic distribution improves the performance of our

model.

Our model also has a few limitations. First, it does not

directly handle obfuscated DLL calls or encrypted/packed

binaries. There are techniques available for detecting

obfuscated DLL calls in the binary (Lakhotia et al. 2005),

and to unpack the packed binaries automatically (Royal

et al. 2006). We may apply these tools for de-obfuscation/

decryption and use their output to our model. Although this

is not implemented yet, we look forward to integrate these

tools with our model in our future versions. Second, the

current implementation is an offline detection mechanism.

Meaning, it cannot be directly deployed on a network to

detect malicious code. However, it can detect malicious

codes in near real time.

We address these issues in our future work, and vow to

solve these problems. We also propose several modifications

to our model. For example, we would like to combine our

features with run-time characteristics of the executables.

Besides, we propose building a feature-database that would

store all the features and be updated incrementally. This

would save a large amount of training time and memory.
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Appendix A

Here we illustrate an example run of the AFR algorithm.

The algorithm scans through each hexdump file, sliding a

window of n bytes and checking the n-gram against the

binary feature set (BFS). If a match is found, then we

collect the corresponding (same offset address) assembly

instruction sequence in the assembly program file. In this

way, we collect all possible instruction sequences of all the

features in BFS. Later, we select the best sequence using

information gain. Example-III: Table 8 shows an example

of the collection of assembly sequences and their IG values

corresponding to the n-gram “00005068.” Note that this

n-gram has 90 occurrences (in all hexdump files). We have

shown only 5 of them for brevity. The bolded portion of the op-

code in Table 8 represents the n-gram. According to the Most

Distinguishing Instruction Sequence (MDIS) heuristic, we

find that sequence #29 attains the highest information gain,

which is selected as the DAF of the n-gram. In this way, we

select one DAF per binary n-gram, and return all DAFs.

Appendix B

Here we summarize the time and space complexities of our

algorithms in Table 9.

B is the total size of training set in bytes, C is the average

#of assembly sequences found per binary n-gram, K is the

maximum #of nodes of the AVL tree (i.e., threshold), N is

the total number of n-grams collected, n is size of each

n-gram in bytes, and S is the total number of selected

n-grams. The worst case assumption: B > N and SC > K
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Abstract

We propose a novel obfuscation technique to defeat data mining based

malware detection models. Assuming that the model can be extracted

from the anti-malware software, we show how patterns can be inserted

and removed from the malware so that it can be recognized as a benign

executable by the malware detector. Experiments with real malware jus-

tifies the effectiveness of our approach.

1 Introduction

Traditional malware detectors are “signature-based”. This technique matches
the executables against a unique telltale string, or “signature”, that can identify
the malware. However, these techniques fail when a new malware arrives whose
signature is unknown. As a result, data mining techniques for malware detec-
tion have been devised [4, 7, 5] that are capable of detecting malware whose
signatures are unknown.

A signature-based malware detector can be defeated by a malware if the
malware writer can extract the model from the malware detector. For example,
assume that the malware detection model uses the signature σ(x) to identify
malware x. If the writer of x can extract the model, this signature σ(x) will be
exposed to him. Then the malware can be obfuscated by removing the signature
σ(x) from it. Now, this obfuscated malware cannot be detected by the malware
detector. It has been shown in the past that it is possible to automatically
extract models from a malware detector [2].

A similar obfuscation technique can be applied to the data-mining based
malware detectors if the detection model can be extracted. However, this ob-
fuscation task would be more challenging, since the data-mining based models
are more complex. Rather than searching a signature in the malware, these
models search the presence and absence of a set of patterns in the malware.
Thus, rather than removing a single signature from the malware, the obfus-
cation attempt may involve a series of pattern additions and deletions in the
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malware. Our current work proposes a solution to this challenging job.
Assuming that we have the data mining model for malware detection, we

provide obfuscation techniques that can successfully evade detection. This in-
volves analyzing the structure of the model, understanding its working principle,
and modify the malware accordingly. We propose two obfuscation techniques.
The first one is “pattern insertion”, which involves inserting a pattern into the
malware so that it is recognized as a benign executable by the model. The
second one is “pattern mutation” that removes some patterns from the malware
to evade detection. We have successfully applied one of these techniques for
obfuscating a real malware, against a data mining based malware detector.

The rest of the paper is organized as follows. Section 2 discusses related
works, section 3 describes the overview of our approach, section 4 describes a
data-mining based malware detection model, section 5 describes how to defeat
this model, section 6 discusses experiments and evaluation of our technique and
section 7 concludes with directions to future works.

2 Related work

3 Overview

Our proposed technique is illustrated in figure 1. It is called “SMalware”, which
stands for Smart Malware. SMalware consists two main modules. The “model-
extraction” module and the “analysis and obfuscation” module. The model-
extraction extracts the malware detection model from the anti-virus software.

Figure 1: The SMalware life-cycle

Then the analysis and obfuscation module analyzes the extracted model
makes necessary obfuscation to the malware code so that the model can no
longer detect it. Although in our current implementation the malware code itself
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is a separate entity from the two modules, in future we would like to integrate
everything into one single executable, so that the malware can automatically
update itself to avoid detection.

4 A data mining based malware detection model

A data mining based malware detector first trains itself with known instances
of malicious and benign executables. Once trained, it can predict the nature
(malicious,benign) of unknown executables by testing them against the model.
The basic idea is illustrated in figure 2

Figure 2: A framework of data mining based malware detector

The correctness of prediction of the model depends on the given training data
and the learning algorithm (e.g. support vector machine, decision tree, naive
bayes etc.). Several data mining based malware detectors have been proposed
in the past [4, 5, 7]. The main advantage of these models over the traditional
signature-based models is that the data mining based models are more robust to
changes in the malware. Signature based models fail when a malware appears
with an unknown signature. In other words, these models only “remembers”
the known signatures. Thus, they can detect only those malware that they have
seen already. On the other hand, data mining based models try to “generalize”
the discriminating features among benign and malicious executables. Thus they
are capable of detecting malware that were not known at the time of training.
Thus, it is more challenging to defeat a malware detector based on data mining.

Next, we briefly describe one of our previous works [5] in data mining based
malware detection. It consists of three main steps:
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1. Feature extraction, feature selection, and feature-vector computation from
the training data.

2. Training a classification model using the computed feature-vector.

3. Testing executables with the trained model.

4.1 Feature extraction

We extract three different kinds of features from the training instances (i.e.,
executables). These are as follows:

1. Binary n-gram features: In order to extract these features, we consider
each executable as a string of bytes, and extract all possible n-grams from
the executables. n is varied from 1 to 10.

2. Assembly n-gram features: In this case, we disassemble each exe-
cutable and obtain an assembly language program. Then we extract the
n-grams of assembly instructions.

3. Dynamic link library (DLL) call features: In this case, we extract
the library calls from the executables and use them as features.

In order to keep things simple, we use only the binary n-gram features in our
current work to show how this model can be defeated by SMalware. However,
SMalware can be extended to defeat a model that uses all the three kinds
of features explained above. Next, we describe how the binary features are
extracted.

Binary n-gram feature extraction: First, we apply the UNIX hexdump
utility to convert the binary executable files into text files, mentioned henceforth
as “hexdump files”, containing the hexadecimal numbers corresponding to each
byte of the binary. This process is performed to ensure safe and easy portability
of the binary executables. The feature extraction process consists of two phases:
(a) feature collection, and (b) feature selection.

The basic feature collection process runs as follows. Let the set of hexdump
training files be H = {h1, ..., hb}. At first, we initialize a set L of n-grams
to empty. Then we scan each hexdump file hi by sliding an n-byte window.
Each such n-byte sequence is an n-gram. Each n-gram g is associated with two
values: p1 and n1, denoting the total number of positive instances (i.e., malicious
executables) and negative instances (i.e., benign executables), respectively, that
contain g. If g /∈ L, then it is added to L, and p1 is initialized to 1 and n1

is initialized to 0 if hi is positive and vice versa. If g ∈ L, then p1 (n1) is
incremented if hi is positive (negative). When all hexdump files have been
scanned, L contains all the unique n-grams in the dataset along with their
frequencies in the positive and negative instances.

There are several implementation issues related to this basic approach. First,
the total number of n-grams may be very large. For example, the total number
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of 10-g in our dataset is 200 million. It may not possible to store all of them in
computers main memory. To solve this problem, we store the n-grams in a disk
file F . Second, if L is not sorted, then a linear search is required for each scanned
n-gram to test whether it is already in L. If N is the total number of n-grams
in the dataset, then the time for collecting all the n-grams would be O(N2), an
impractical amount of time when N=200 million. In order to solve the second
problem, we use a data structure calledAdelson Velsky Landis (AVL) tree [3]
to store the n-grams in memory. An AVL tree is a height-balanced binary
search tree. This tree has a property that the absolute difference between the
heights of the left sub-tree and the right sub-tree of any node is at most one. If
this property is violated during insertion or deletion, a balancing operation is
performed, and the tree regains its height-balanced property. It is guaranteed
that insertions and deletions are performed in logarithmic time. So, in order
to insert an n-gram in memory, we now need only O(log2(N)) searches. Thus,
the total running time is reduced to O(Nlog2(N)), making the overall running
time about 5 million times faster when N as large as 200 million. Our feature
collection algorithm implements these two solutions.

Feature selection If the total number of extracted features is very large,
it may not possible to use all of them for training because of several reasons.
First, the memory requirement may be impractical. Second, training may be too
slow. Third, a classifier may become confused with a large number of features,
because most of them would be noisy, redundant or irrelevant. So, we are to
choose a small, relevant and useful subset of features. We choose information
gain (IG) as the selection criterion, because it is one of the best criteria used
in literature for selecting the best features. IG can be defined as a measure of
effectiveness of an attribute (i.e., feature) in classifying a training data [6]. If
we split the training data based on the values of this attribute, then IG gives
the measurement of the expected reduction in entropy after the split. The more
an attribute can reduce entropy in the training data, the better the attribute is
in classifying the data.

Now, the next problem is to select the best S features (i.e., n-grams) accord-
ing to IG. One nave approach is to sort the n-grams in non-increasing order
of IG and select the top S of them, which requires O(Nlog2N) time and O(N)
main memory. But this selection can be more efficiently accomplished using a
heap that requires O(Nlog2S) time and O(S) main memory. For S=500 and
N=200 million, this approach is more than 3 times faster and requires 400,000
times less main memory. A heap is a balanced binary tree with the property
that the root of any sub-tree contains the minimum (maximum) element in
that sub-tree. First we build a min-heap of size S. The min-heap contains the
minimum-IG n-gram at its root. Then each n-gram g is compared with the
n-gram at the root r. If IG(g) ≤ IG(r) then we discard g. Otherwise, r is
replaced with g, and the heap is restored.
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Feature vector computation Suppose the set of feature selected in the
above step is F = {f1, ..., fS}. For each hexdump file hi, we build a binary
feature vector hi(F) = {hi(f1), ..., hi(fS)}, where hi(fj) = 1 if hi contains
feature fj , or 0, otherwise. The training algorithm of a classifier is supplied
with a tuple (hi(F), l(hi)), for each training instance hi, where hi(F) is the
feature vector and l(hi) is the class label of the instance hi (i.e., positive or
negative).

4.2 Training

We apply SVM, Nave Bayes (NB), and decision tree (J48), classifiers for the
classification task. SVM can perform either linear or non-linear classification.
The linear classifier proposed by Vladimir Vapnik creates a hyperplane that sep-
arates the data points into two classes with the maximum-margin. A maximum-
margin hyperplane is the one that splits the training examples into two subsets,
such that the distance between the hyperplane and its closest data point(s) is
maximized. A non-linear SVM [1] is implemented by applying kernel trick to
maximum-margin hyper-planes. The feature space is transformed into a higher
dimensional space, where the maximum-margin hyperplane is found. A deci-
sion tree contains attribute-tests at each internal node and a decision at each
leaf node. It classifies an instance by performing attribute tests from root to a
decision node. Decision tree is a rule-based classifier. Meaning, we can obtain
humanreadable classification rules from the tree. J48 is the implementation of
C4.5 Decision Tree algorithm. C4.5 is an extension to the ID3 algorithm in-
vented by Quinlan. In order to train a classifier, we provide the feature vectors
along with the class labels of each training instance, that we have computed in
the previous step.

4.3 Testing

Once a classification model is trained, we can assess its performance by testing
it against an instance (i.e., executable) that has not been seen by the model at
training time. In order to test an executable h, we first compute the feature
vector h(F) corresponding to the executable, in the same way explained above.
When this feature vector is provided to the classification model, the model
outputs (predicts) a class label l(h) for the instance . If we know the true class
label of h, then we can compare the prediction with the true label, and check
the correctness of the learned model.

In the next section, we describe a technique that can be applied to defeat a
malware detection model like the one explained above.

5 Obfuscation techniques

Now we describe a malware obfuscation technique that can defeat a data mining
based malware detector, which is built using a decision tree classifier. We choose
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decision tree so that the SMalware technique can be easily understood. However,
this technique can be generalized for any data mining based malware detector.

Figure 3: An example of a decision-tree based malware detector

Figure 3 shows a simple decision tree model for malware detection. Each
internal node in the tree corresponds to an attribute test. For example, the
root has the attribute test pt1. A test instance x (i.e., executable) is first
tested against the root. If x has the attribute pt1, then the left branch (’T’rue)
is followed by x, otherwise, the right branch (’F’alse) is followed. The leaf
nodes contains the final decision, denoted by ’-’ (benign) or ’+’ (malicious).
For example, the leaf node L1 corresponds to a ’-’ decision. Here we consider
that each attribute corresponds to a particular pattern (i.e., feature) in the
executable.

According to the model in figure 3, if a malware x has pattern pt1 and pt2,
then it will be detected as benign or, if it does not have neither pt1 or pt4, then
it will be detected as benign. In order to evade detection, the malware must be
detected as benign by the model. This can be done by inserting the patterns
pt1 and pt2 into the malware, or removing both pt1 and pt4 from the malware.

5.1 Overview

Malware detectors based on static data-mining attempt to learn correlations
between the syntax of untrusted binaries and the (malicious or benign) behav-
ior that those binaries exhibit when executed. This learning process is nec-
essarily unsound because most definitions of “malicious behavior” are Turing-
undecidable . Thus, every purely static algorithm for malware detection is
vulnerable to false positives, false negatives, or both. Our obfuscator exploits
this weakness by discovering false negatives in the model inferred by a static
malware detector.
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We discover false negatives using one of two techniques -

• Pattern Insertion and

• Pattern Mutation

Of the two, pattern insertion requires significantly less effort and is the first
vulnerability we look to exploit. Some static models cannot be exploited using
pattern insertion, and in such cases we show that a form of pattern mutation
can be used to obfuscate the malicious nature of the malware. In the following
examples, we assume that the decision tree model has been constructed using
the binary n-gram features. Thus, each pattern pti is a binary n-gram, that is,
a string of n consecutive bytes in the binary executable.

5.2 Pattern insertion

This technique analyzes the model and adds a pattern to the malware so that
the malware is diagnosed as “benign” by the model.

Methodology Each path from the root to a leaf node in a decision tree cor-
responds to a rule, which is a conjunction of conditions. For example, in figure
3, the leaf node L2 corresponds to the following rule (R2):

(1) R2 : pt1 ∧ ¬pt2 ∧ pt3 ⇒ benign

which says that if a test instance has pattern pt1 and does not have pattern pt2,
and has pattern pt3, then it is benign. Here the negative literal ¬pt2 indicates
that this pattern must not be present in the test instance. In this attack, the
obfuscator examines the decision tree and tries to identify a path from the root
to a leaf node that satisfies the following conditions -

1. All the negative literals in the rule corresponding to the path from root
to the leaf node are satisfied.

2. There is at least one positive literal in the rule that is not satisfied.

3. The leaf node is classified as benign.

For example, with reference to figure 3, suppose the malware x does not have
pt2. Then the following leaf nodes satisfy the above conditions: L1, and L2,
both of which are negative (benign) decision nodes. L1 is satisfied because the
rule corresponding to L1 does not have any negative literal. Meaning, all we
have to do is to insert both pt1 and pt2 in the malware. L2 is satisfied because
the negative literal ¬pt2 is true (since x does not have pt2). The presence of
such a path is a necessary and sufficient condition for a pattern insertion attack.

Let the positive literals in the rule be pt1, pt2,...,ptn. Let the byte string that
is formed from the concatenation of these patterns be called a “feature-string”
fs.

fs = pt1|pt2|...|ptn
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where the symbol ’—’ stands for the string concatenation operation. A trivial
implementation of the pattern insertion attack is to append the byte string fs
to the end of the malware executable x.

Justification of insertion The extra bytes appended will not affect the func-
tionality of the malware in any way because the presence of these bytes will not
be reflected in the meta-data found in the header of the executable. As such,
these extra bytes will never be used by the malware executable in its lifetime.

5.3 Pattern Mutation

If no path can be found that satisfies the conditions for a pattern insertion
attack, it is still possible to obfuscate the malware binary using a pattern mu-
tation attack. In this case, we first identify the leaf node where the malware x
ends up, and generate the rule corresponding to the leaf node. Note that there
must be one or more positive literals in the rule. Because, otherwise, the pat-
tern insertion technique can be applied. We then list the set of positive literals
PL= {pt1, ..., ptn}. Next, we disassemble the malware binary and identify the
assembly level instructions that correspond to each of the patterns pti ∈ PL.

At this point there are multiple ways to proceed. The simplest form of
mutation involves adding nop instructions in the middle of the group of assembly
instructions corresponding to each pattern. This effectively changes the byte
pattern of the reassembled binary, thus masking the patterns from the malware
detector.

A more sophisticated strategy would involve identifying the sequence of as-
sembly instructions Ipti

= {i1, ..., ik} that correspond to each pattern pti ∈ PL

and replacing Ipti
with a different set of functionally similar instructions, so

that the modified binary does not contain pti.
Although we have not implemented pattern mutation in our obfuscater, we

are confident that the pattern mutation attacks we have described can be used
to successfully obfuscate a malware binary in those cases where the model is
not vulnerable to a pattern insertion exploit.

6 Experiments

We design our experiments to run on two different datasets. Each dataset
has different sizes and distributions of benign and malicious executables. We
generate the binary n-gram features using the techniques explained in Section
4. Then we build classifiers using decision tree.

6.1 Dataset

We have two non-disjoint datasets. The first dataset (dataset1) contains a col-
lection of 1,435 executables, 597 of which are benign and 838 are malicious. The
second dataset (dataset2) contains 2,452 executables, having 1,370 benign and
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1,082 malicious executables. So, the distribution of dataset1 is benign=41.6%,
malicious=58.4%, and that of dataset2 is benign=55.9%, malicious=44.1%.
This distribution was chosen intentionally to evaluate the performance of the fea-
ture sets in different scenarios. We collect the benign executables from different
Windows XP, and Windows 2000 machines, and collect the malicious executa-
bles from (http://vx.netlux.org), which contains a large collection of malicious
executables. The benign executables contain various applications found at the
Windows installation folder (e.g. “C:/Windows”), as well as other executables
in the default program installation directory (e.g., “C:/Program Files”). Mali-
cious executables contain Viruses, Worms, Trojans, and Back-doors. We select
only the Win32 Portable Executables (P.E.) in both the cases. We would like
to experiment with the ELF executables in future.

6.2 Experimental setup

Our implementation is developed in Java with JDK 1.5. We use Weka ML tool-
box (http://www.cs.waikato.ac.nz/ml/weka/.) for training decision tree classi-
fier (the C4.5 algorithm).

6.3 Evaluation

In order to evaluate our technique on malware obfuscation, we randomly pick
a malware called “Win32.Navidad.a”, which is an email worm. Our malware
detection model M sucessfully detected this as a malware. In order to defeat
the model, the malware has been obfuscated with the following steps:

1. Generate the binary feature vector corresponding to the malware x using
our technique described in section 4.3. Let the feature vector be F(x) =
{f1(x), ..., fn(x)}, where fi(x) is either zero or 1 depending on whether
the feature (i.e., n-gram) fi is absent or present in x.

2. Analyze the decision tree model M and identify a leaf Li that satisfies the
conditions for “pattern insertion” attack.

3. Identify the patterns (i.e., n-grams) that need to be inserted.

4. Insert the patterns into the malware using a hexadecimal editor.

Once the obfuscation is done, the the model M detects the obfuscated malware
as “benign”. It has been also tested that the obfuscated malware still has the
identical functionality as the original malware.
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7 Conclusion
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Abstract 

 

We propose a novel technique for malware development in which malware proactively 

learns and adapts to malware signature updates fully automatically in the wild, in order to 

avoid detection by signature-based protection systems.  The technique serves as a general 

malware propagation mechanism to carry out sustained attacks against adversaries with 

signature-based malware protection, even in the presence of signature updates that may 

be specifically intended to defeat the attack.  In addition to its usefulness in offensive 

operations, we believe that the research will identify important weaknesses and poor 

design decisions in existing anti-malware products that leave users vulnerable to such 

attacks, and suggest methods of mitigating or closing those vulnerabilities. 

 

1. Introduction 

 

Mobile code has become a ubiquitous component of almost all modern computing 

architectures, both networked and non-networked.  Examples typical of networked 

architectures include web browsers that download and interpret web scripting code, 

automatic patching facilities that download and apply software updates, and email clients 

that download mobile code via email attachments.  Non-networked architectures take a 

more manual approach to mobile code, such as when a user attaches a handheld device 

that uploads a new device driver or transfers other binary files to the system. 

 

A practical reality is that most mobile code systems are vulnerable to malicious code 

attacks of some form.  This is because most useful security properties are provably 

undecidable; thus, there is no sound and complete static analysis that can reliably 

distinguish policy-violating code from policy-satisfying code [1].  As a result, protection 

systems for mobile code architectures must rely upon unsound or incomplete 

enforcement strategies.  A canonical example is that of anti-malware scanning 

technology, such as that found in commercial products like Norton Antivirus and McAfee 

VirusScan, which distinguish malware from benign software using signature-matching. 

Each signature encodes a set of bit-patterns specific to known malware.  When untrusted 

software matches a signature in the detector’s database, the detector identifies it as 

possible malware and takes steps to disable it.  Signature-matching can take place at 

download-time, at load-time, or by examining the program’s memory image at runtime 

[2]. 

 



Signature-matching is susceptible to both false-negatives and false-positives.  To keep 

false-positives to a minimum, signatures must not include bit-patterns found in benign 

software lest that software be rejected by the protection system.  To minimize false-

negatives, the signature database must be frequently updated by human experts (or 

automated machine learning systems—see below) as new malware is identified.  This 

makes signature-based malware detection ineffective against zero-day attacks since in 

those cases no signature has yet been generated.  However, once the malware has been 

identified, signature-based approaches have proven to be an effective and efficient means 

of disinfecting compromised systems and for preventing reinfection by the same malware 

or its variants. 

 

Carrying out a sustained attack on a system protected by signature-matching technology 

thus requires malware that can survive a signature update deployed in response to the 

attack.  While there are numerous polymorphic worms that randomly self-modify in an 

attempt to defeat signature-matching (e.g., Storm, Melissa, MyDoom, etc.), prior work 

has demonstrated that each can be modeled by a suitably expressive signature (c.f., [3]).  

The fundamental weakness of these polymorphic worms is that they each employ a static 

self-obfuscation algorithm, leaving signature-generators free to develop a suitably 

expressive signature that identifies all possible outputs of that static algorithm.  Once a 

single instance of the malware is identified and analyzed, it is therefore only a matter of 

time before an adequate signature-matching defense is implemented and deployed to 

defeat all variants. 

 

1.1. Objectives 

 

We propose to study a novel alterative approach to malware development that we term 

proactive signature reversal.  In our approach the malware chooses its obfuscation 

strategy based on the contents of a rival signature database.  The obfuscation is derived 

directly from the signature information so as to avoid detection by all signatures in the 

database.  It then applies the obfuscation to itself, actively adapting to ongoing signature 

updates.  Such malware therefore propagates in three steps: (1) signature acquisition, (2) 

obfuscation derivation, and (3) self-obfuscation, each of which is described in greater 

detail in the following sections. 

 

Reliably detecting proactive signature-reversing malware is far more difficult than 

detecting conventional polymorphic malware because any signature developed in 

response to the attack has the effect of introducing new malware variants that did not 

exist (and were not possible) when the signature was devised.  These new variants 

circumvent the new signature database with high probability.  Thus, the malware adapts 

in the wild to new detection strategies, paralleling and resisting the efforts of human 

experts and expert systems to adapt signature databases to new malware threats. 

 

The above goals give rise to the following set of research objectives: 

• Discover and evaluate machine learning algorithms that can learn an adversary’s 

signature database (or an adequate approximation) in the wild, using only 

information likely to be available to malware. 



• Discover methods of automatically deriving semantics-preserving obfuscation 

functions from signatures. 

• Apply techniques from language-based security, recursion theory, and 

cryptography to develop formal proofs of irreversibility, soundness, and 

transparency for the obfuscation functions and binary transformation algorithms 

we derive. 

• Implement an automated, proactive, signature-reversing malware binary (with a 

benign payload) and test it against existing signature-based anti-malware products 

using UTD’s secure SAIAL lab. 

• Recommend defenses that could be used to protect against proactive signature-

reversing attacks. 

 

2. Technical Approach 

 

Developing a proactive signature-reversing algorithm can be divided into three sub-

problems: (1) acquiring the adversary’s signature database or a suitable approximation in 

a fully automated, reliable manner, (2) deriving a semantics-preserving obfuscation 

function from a signature database, and (3) successfully applying the obfuscation 

function dynamically.  Each of these problems is discussed in more detail below. 

 

2.1. Signature Acquisition 

 

In order for proactive signature reversal to be practical, malware must have some means 

of acquiring or approximating an adversary’s signature database fully automatically on 

the fly.  We plan to study several methods that leverage our prior work on automated 

malware classifiers to accomplish this. 

 

In order to effectively interoperate with other system software, most antivirus products 

support an API via which operating systems and applications can initiate virus scans of 

specific files or processes and learn the results.  For example, antivirus products 

compatible with Internet Explorer support Microsoft’s IOfficeAntivirus COM 

interface [4], which exposes this functionality.  Such APIs allow the underlying signature 

database to be queried by malware.
1
  We believe that such a query interface is sufficient 

to learn relevant details of the underlying signature model [5], given a suitable machine 

learning algorithm. 

 

Given a sufficient amount of instances (i.e., benign and malicious executables), a 

machine learning algorithm can learn to distinguish a malware from a benign executable 

by generalizing their common and contradictory characteristics. Our previous work [6] 

shows that automated classifiers, built using a collection of malicious and benign 

executables as training examples, can achieve very high prediction accuracies, and low 

false positives. If such a machine learning algorithm is embedded within a malware, the 

malware can collect samples (i.e., executables) from the host machine and query the 

                                                 
1
 To conceal this behavior from the user, the malware must of course take appropriate steps to prevent the 

antivirus product from displaying a graphical interface to the user in response to the query. 



antivirus to know whether a sample is benign or malicious. In this way, the malware can 

build a classifier from the scratch, or enrich its existing classifier (if it already had one). 

As proven by [6], this classifier will have almost the same prediction accuracy as the 

expert-generated classifier (i.e., the antivirus). In other words, the knowledge of 

malicious “signatures” acquired by the automated classifier approximates the knowledge 

embedded into the expert-generated classifier. Our work could examine various different 

classification algorithms to discover which ones are most effective at approximating 

signature databases used by various antivirus products. 

 

Some antivirus products, such as open-source products [7], distribute signature updates to 

the public in a standard format, or provide free detector engines that can identify (but not 

necessarily disinfect) known malware.  In these cases proactively signature-reversing 

malware can obtain updated signature databases (or the equivalent) by directly 

downloading it from the same source that supplies updates to the installed antivirus 

product.  Even when the victim’s signature database is not freely distributed in this way, 

publicly available databases are useful as approximations of the victim’s database since 

they are very likely to provide similar classification behavior on many inputs. 

 

2.2. Obfuscation Derivation 

 

Once an adequate model of the signature database has been acquired by the malware, it 

must be reformulated as an obfuscation function that transforms code that matches the 

signatures into semantically equivalent code that does not.  The details of this process 

depend on the exact signature approximation model used.  Our ongoing research on 

decision tree-based classifiers has demonstrated that salient features can be added and 

removed from binaries to defeat these classifiers using standard binary rewriting 

strategies such as payload encryption, instruction insertion, basic block reordering, and 

register re-allocation. [8]. 

 

It should be noted that besides decision tree, any rule-based classifiers, such as Ripper, 

decision-stump, decision table etc. can be applied as an obfuscation function. However, 

the possibility of using other kinds of classifiers, such as Support Vector Machine 

(SVM), bayes net etc. needs to be investigated, which can be considered as a future work. 

 

Building upon this preliminary work, we plan to apply language-based security 

techniques such as type-preserving compilation and cryptographic one-way hash 

functions to obtain irreversible, provably semantics-preserving obfuscation functions 

from signatures. 

 

2.3. Self-Obfuscation 

 

The self-obfuscation operation itself involves applying the obfuscation function derived 

above to the malware binary itself and to copies produced during the course of malware 

propagation.  When signature-matching occurs prior to runtime, the obfuscation function 

can simply be applied to the file image of the malware binary; however, defeating 



runtime signature-matching requires a more sophisticated binary-rewriting strategy that 

obfuscates the runtime memory image of the process. 

 

3. Conclusion 

 

Proactive signature-reversing is a powerful but as yet unrealized form of malware 

propagation.  By automating and reversing the processes currently used by signature-

based malware defense technologies, such malware adapts dynamically to signature 

updates, rendering the updates ineffective.  Investigating and evaluating the practicality 

of this approach is therefore an important step not only for effective offensive operational 

capability but also for protecting against reciprocal attacks. 
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