
 1

Information Operations
Across Infospheres

Annual Report

Prepared by

The University of Texas at Dallas

Submitted to:

Air Force Office of Scientific Research

October 10, 2006

Under
Contract: FA9550-06-1-0045

Period of Performance:
December 1, 2005 – August 30, 2006

Subcontractor:

George Mason University

 2

Contact Information

Dr. Bhavani Thuraisingham
Professor of Computer Science
and Director of the Cyber Security Research Center
Erik Jonsson School of Engineering and Computer Science
Box 830688, EC 31
University of Texas at Dallas,
Richardson, TX 75083-0688
Tel: 972-883-4738
Fax: 972-883-2349
Email: bhavani.thuraisingham@utdallas.edu
http://www.utdallas.edu/~bxt043000/

 3

EXECUTIVE SUMMARY OF THE PROJECT
There is a critical need for organizations to share data within and across infospheres and
form coalitions so that analysts could examine the data, mine the data, and make effective
decisions. Each organization could share information within its infosphere. An infosphere
may consist of the data, applications and services that are needed for its operation.
Organizations may share data with one another across what is called a global infosphere
that spans multiple infospheres. It is critical that the war fighters get timely information.
Furthermore, secure data and information sharing is an important requirement. The
challenge is for data processing techniques to meet timing constraints and at the same
time ensure that security is maintained.

This proposal addresses information operations across infospheres. We first describe
secure timely data sharing across infospheres and then focus on Role-based access
control and Usage control in such an environment. Our goal is to send timely information
to the war fighter while maintaining security. We will also address the application of
game theory as well as decision centric data mining techniques to extract information
from both trustworthy and untrustworthy partners of the coalition.

In particular, the objectives of this project are as follows:

• Develop a Framework for Secure and Timely Data Sharing across Infospheres.

• Investigate Access Control and Usage Control policies for Secure Data Sharing.

• Develop innovative techniques for extracting information from trustworthy and
untrustworthy partners.

Technical Merit: While there has been work on data sharing across coalitions, an in-
depth investigation of security issues as well as a study of the tradeoffs between security
and timely processing has yet to be carried out. To our knowledge, this project is the first
to investigate sophisticated security techniques such as Usage Control as well as decision
centric data mining techniques for timely and secure data sharing across coalitions.

Broader Impact: The research to be carried out on this project is directly applicable to
Network Centric Operations (NCO) that implement Network Centric Warfare (NCW).
NCW promotes information sharing, shared situational awareness and knowledge of
commander’s intent. In addition it also enables war fighting advantage by providing
synchronization, speed of command and increased combat power. We focus mainly on
information sharing aspects of NCW. In particular, the results of this project can be
transferred to the timely and secure data sharing services of the Network Centric Services
activity being carried out by the Department of Defense.

Research Team: The research will be carried out both at the University of Texas at
Dallas and at George Mason University. The principal investigators are among the
leading researchers in Data and Applications Security. They have conducted innovative
research in Secure Database Design, the Inference Problem, Role-based Access Control
and Usage Control techniques as well as and carried out technology transfer activities.
They are Fellows of IEEE, ACM, AAAS and the British Computer Society and have
received prestigious awards (including from IEEE) for their research in Data and
Applications Security.

 4

ABSTRACT OF THE ANNUAL REPORT

The research presented in this annual report was carried out at mainly the University of
Texas at Dallas (UTD) between December 1, 2005 and August 30, 2006. It describes the
issues and challenges for information operations across infospheres and focuses on
assured information sharing. We have examined three models: In the first model the
partners of the coalition are considered to be trustworthy. In the second model, the
partners are semi-trustworthy. In the third model the partners are untrustworthy. We need
to consider all three models to fight the global war on terror.

This annual report essentially consists of five technical reports published at the
University of Texas at Dallas. An overview of Assured Information Sharing is discussed
in UTD-CS-43-06 (Report #1). In the case of trustworthy models we conducted
experiments on data sharing vs. data policy enforcement. We also carried out data mining
before and after policy enforcement. The results are discussed in UTD-CS-44-06 (Report
#2). In addition, we conducted design and simulation of trust management techniques for
a coalition environment. This research is presented in UTD-CS-45-06 (Report #3). For
the semi-trustworthy model we examined the use of game theory for extracting
information from the partners. This research is discussed in UTD-CS-46-06 (Report #4).
For the untrustworthy model, we examined the use of data mining for defensive
operations. This research is discussed in UTD-CS-47-06 (Report #5).

In addition to the above, George Mason University (GMU) received a subcontract from
the University of Texas at Dallas to examine the use of Role-based Access Control
(RBAC) and Usage Control models for Coalition data sharing. The research was carried
out at GMU between June and August 2006. This research is in progress and a summary
is discussed in Appendix A. In Appendix B, we discuss some of our related research
carried out at UTD under separate grants and contracts that has enhanced our current
project for AFOSR.

Our work on AFOSR project for FY07 will include examining service oriented
architectures for information sharing between trustworthy partners as well as determining
the impact of time constraints for policy enforcement, developing probing techniques for
extracting information from semi-trustworthy partners, and developing techniques for
offensive information operations to handle untrustworthy partners. In addition we will
also have a complete model based on RBAC/UCON for assured information sharing.

 5

ACKNOWLEDGEMENT

Much of the research discussed in this annual report was supported by the Air Force
Office of Scientific Research under Contract FA9550-06-1-0045. We thank Dr. Robert
Herklotz of AFOSR for funding his encouragement and motivation. This research as also
partially supported by the Erik Jonsson School of Engineering and Computer Science at
the University of Texas at Dallas under the Texas Enterprise Funds. We thank Prof.
Robert Helms (Dean) and Prof. Andrew Blanchard (Senior Associate Dean) for this
support.

 6

Table of Contents
Report #1:
Assured Information Sharing: Technologies, Challenges and Directions
Bhavani Thuraisingham; Page: 7
UTD-CS-43-06
Report #2:
Design and Implementation of Policy Enforcement, Data Sharing and
Mining Components for Trustworthy Coalitions
Mamoun Awad, Latifur Khan, Dilsad Cavus, Bhavani Thuraisingham
Page: 20
UTD-CS-44-06

Report #3:
Design and Simulation of Agent-based Trust Management Techniques
for a Coalition Environment
Srinivasan Iyer and Bhavani Thuraisingham; Page: 38
UTD-CS-45-06

Report #4:
Research and simulation of game theoretical techniques for data
sharing among semi-trustworthy partners
Ryan Layfield, Murat Kantarcioglu, and Bhavani Thuraisingham; Page: 50
UTD-CS-46-06

Report #5:
Defensive Information Operations: DETECTING MALICIOUS
EXECUTABLES USING ASSEMBLY FEATURE RETRIEVAL in an
Untrustworthy Environment
Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham; Page: 65
UTD-CS-47-06

Appendix A:
ROLE-BASED ACCESS CONTROL AND USAGE CONTROL
POLICIES FOR INFOSPHERES
Ravi Sandhu, Min Xu, Bhavani Thuraisingham; Page: 84

Appendix B:
Related Work in Data and Applications Security at UTD
Bhavani Thuraisingham; Page: 92

 7

Report #1:

ASSURED INFORMATION SHARING:
TECHNOLOGIES, CHALLENGES AND DIRECTIONS

Bhavani Thuraisingham
The University of Texas at Dallas

Published as Technical Report: UTD-CS-43-06

ABSTRACT

This paper describes issues, technologies, challenges, and directions for Assured Information
Sharing (AIS). AIS is about organizations sharing information but at the same time enforcing
policies and procedures so that the data is integrated and mined to extract nuggets. This is the first
in a series of papers we are writing on AIS. It provides an overview including architectures,
functions and policies for AIS. We assume that the partners of a coalition may be trustworthy,
semi-trustworthy or untrustworthy and investigate solutions for AIS to handle the different
scenarios.

1. INTRODUCTION

Data from the various data sources at multiple security levels as well as from different services
and agencies including the Air Force, Navy, Army, Local, State and Federal agencies have to be
integrated so that the data can be mined, patterns and information extracted, relationships
identified, and decisions made. The databases would include for example, military databases that
contain information about military strategies, intelligence databases that contain information
about potential terrorists and their patterns of attack, and medical databases that contain
information about infectious diseases and stock piles. Data could be structured or unstructured
including geospatial/multimedia data. Data also needs to be shared between healthcare
organizations such as doctors’ offices, hospitals and pharmacies. Unless the data is integrated and
the big picture is formed, it will be difficult to inform all the parties concerned about the
incidences that have occurred. While the different agencies have to share data and information,
they also need to enforce appropriate security and integrity policies so that the data does not get
into the hands of unauthorized individuals. Essentially the agencies have to share information but
at the same time maintain the security and integrity requirements.

This is the first in a series of reports we are writing on Assured Information Sharing. The reports
that follow will include applying game theoretical techniques for AIS among semi-trustworthy
partners, defending against malicious attacks while data sharing, applying RBAC (role-based
access control) with UCON (Usage Control) extensions for AIS and carrying out offensive
operations against untrustworthy partners. We are also investigating risk-based access control,
data origin and provenance issues as well as geospatial data management for AIS.

In this paper we describe Assured Information Sharing that will ensure that the appropriate
policies for confidentiality, privacy, trust, release, dissemination, data quality and provenance are
enforced. We discuss technologies for AIS as well as novel approaches based on game theoretical
concepts. In section 2 we will provide an overview of an AIS architecture. Data integration and
analysis technologies for AIS will be discussed in section 3. Security policy aspects including
confidentiality, privacy and trust policies will be discussed in section 4. Integrity and
dependability issues such as data provenance and quality and real-time processing will be

 8

discussed in section 5. Balancing conflicting requirements including security vs. real-time
processing will be discussed in section 6. Some novel approaches will be discussed in section 7.
In particular applications of game theoretical techniques for handling semi-trustworthy partners
will be discussed. Approaches for handling untrustworthy partners will be discussed in section 8.
Discussion of the series of reports we will be writing on AIS is mentioned in section 9. The paper
is concluded in section 10.

2. ORGANIZATIONAL DATA SHARING

A coalition consists of a set of organizations, which may be agencies, universities and
corporations that work together in a peer-to-peer environment to solve problems such as
intelligence and military operations as well as healthcare operations. Figure 1 illustrates an
architecture for a coalition where three agencies have to share data and information. Coalitions
are usually dynamic in nature. That is, members may join and leave the coalitions in accordance
with the policies and procedures. A challenge is to ensure the secure operation of a coalition. We
assume that the members of a coalition, which are also called its partners, may be trustworthy,
untrustworthy or partially (semi) trustworthy.

Figure 1. Architecture for Organizational Data Sharing

Various aspects of coalition data sharing are discussed in the Markle report [MARK03].
However, security including confidentiality, privacy, trust, integrity, release and dissemination
has been given little consideration. Much of the prior work on security in a coalition environment
has focused on secure federated data sharing. Thuraisingham was one of the first to propose
multilevel security for federated database systems [THUR94]. Discretionary security was

Export
Data/Policy

Component
Data/Policy for
Agency A

Data/Policy for Coalition / Federation

Export
Data/Policy

Component
Data/Policy for
Agency C

Component
Data/Policy for
Agency B

Export
Data/Policy

 9

proposed in [OLIV95]. None of the previous work has focused on determining the amount of
information that is lost for conducting military operations by enforcing security. Furthermore,
developing flexible policies in a coalition environment are yet to be examined. Enforcing security
while meeting timing constraints remains a largely unexplored topic. A discussion of information
survivability issues and the need for flexible policies for enforcing security and meeting timing
constraints are given in [THUR99] and [SON95]. However, to our knowledge, no research has
been reported on secure (including confidentiality, privacy, trust and integrity) and timely data
sharing for a coalition environment. Some of the challenges include the following:

Data Sharing: One of the main goals of coalition data sharing is for organizations to share the
data but at the same time maintain autonomy. For example, one database could be used for travel
data while another database could be used to manage data pertaining to airplanes. For counter-
terrorism applications and military operations, the key is to make links and associations as rapidly
as possible. We need policies and procedures to determine what data to share under what
conditions.

Data Mining: Data mining techniques extract patterns and trends often previously unknown from
large quantities of data [THUR98]. However data mining tools could give out false positives and
false negatives. This is especially critical for applications such as counter-terrorism and military
operations as it could result in catastrophic consequences [THUR03]. Therefore, we need human
analysts to examine the patterns and determine which ones are useful and which ones are
spurious. The challenge is to develop automated tools to sift through the data and produce only
the useful links and associations.

Security: Confidentiality, privacy, integrity, trust, real-time processing, fault tolerance,
authorization and administration policies enforced by the component organizations via the local
agencies have to be integrated at the coalition level. As illustrated in Figure 1, each organization
may export security policies and data to the coalition. The component systems may have more
stringent access control requirements for foreign organizations. The challenge is to ensure that
there is no security violation at the coalition level.

In sections 3 through 6 we discuss various aspects on AIS assuming that the partners are
trustworthy. Semi-trustworthy partners will be discussed in section 7. Untrustworthy partners will
be discussed in section 8.

4 DATA INTEGRATION AND ANALYSIS TECHNOLOGIES

Data Integration: As illustrated in Figure 2, data from the various data sources at multiple levels
such as local, state and federal levels have to be integrated so that the data can be mined, patterns
extracted and decisions made. Data integration has been attempted for about 20 years. Until
recently brute force integration techniques consisting of translators and gateways were used
between the multiple data management systems. Standards such as RDA (Remote Database
Access) were developed initially for client-server interoperability. Later object-base wrappers
were used to encapsulate the multiple systems including the legacy systems. For example,
distributed object management standards were used to encapsulate systems and applications into
objects. However, common representation of the data remained a challenge. It is only recently
that we have a good handle on syntactic integration through standards such as XML (eXtensible
Markup Language). The idea is as follows: each data system publishes its schema (also called
metadata) in XML. Since all the systems now represent their schema in XML, the systems can
talk to each other in a seamless fashion.

A major challenge for data integration is semantic heterogeneity. While much progress has been
made on syntactic integration, not much work has been reported on semantic integration. For
example, multiple systems may use different terms for the same data; the procedure EKG (Electro

 10

Cardiogram) is called ECG in the United Kingdom. Even within the same state, different
hospitals may use different terms to mean the same entity. For example, one hospital may use the
term influenza while another hospital may use the term flu. In some cases, the same term may be
used to represent different entities. While repositories and dictionaries have been built, a
satisfactory solution for semantic heterogeneity is still not available. The development of
semantic web technologies including the Resource Description Framework (RDF) language
standard shows promise to handle semantic heterogeneity.

Multimedia and Geospatial Data: Data will include structured data as well as unstructured data
such as text, voice, video and audio. Data emanating from multiple data sources including sensor
and surveillance data have to be integrated and shared. Managing, integrating and mining
multimedia data remains a challenge. We need efficient indexing techniques as well as XML and
RDF based representation schemes. Furthermore, the data has to be mined so that patterns and
trends are extracted. Video data could be data emanating from surveillance cameras or news
feeds such as CNN (Cable News Network) video data. Emergency response systems have to
integrate geospatial data such as maps together with structured data, make sense out of the data
and rapidly produce summaries so that the emergency response teams can read and understand
the data [ASHR06].

Data Mining: Integrated data may be mined to extract patterns for suspicious and unusual
behavior. Much of the work in data mining has focused on mining relational and structured
databases. While some work has been reported on text, image, audio and video data mining,
much remains to be done. For example, how can one mine integrated geospatial and multimedia
data? How can false positives and false negatives be eliminated or at least reduced? What are the
training models used for multimedia data? What are the appropriate outcomes for multimedia
data mining? Does it make sense to extract metadata and then mine the metadata? Much remains
to be done before operational tools for multimedia and geospatial data mining are developed.
Semantic Web: Semantic web is the vision of Tim Berners Lee and is utilized by many
applications including e-business [LEE01]. Due to the extensive investments by the DoD
(Department of Defense) and other agencies, many semantic web technologies such as XML,
RDF and Ontologies have been developed for applications such as interoperability. Furthermore,
semantic web technologies are being developed for different communities. These technologies are
critical for AIS. For example, we need ontologies specified in languages such as OWL (web
ontology language) to specify objects so that multiple systems can work with the ontologies to
handle semantic heterogeneity. A member organization of a coalition can publish its schema in
languages such as XML or RDF to facilitate interoperability and information extraction.
While semantic webs are being developed for different communities, there is little work on
enforcing security, privacy and trust for these semantic webs. XML, RDF and Ontologies have to
be secure. Furthermore, there is a need to incorporate trust negotiation for the semantic web. We
are developing secure semantic web technologies for AIS [BERT04], [THUR05a].

4. SECURITY POLICY ENFORCEMENT

Security policies include policies for confidentiality, privacy, trust, release, dissemination and
integrity. A broader term is dependable systems or trustworthy systems that also include real-time
processing and fault tolerance. We will discuss dependability in the next section. By
confidentiality we mean that data is only released to individuals who are authorized to get the
data. Privacy in general deals with the situation where an individual determines what information
should be released about him/her. (Note that different definitions of privacy have been proposed.)
Trust policies may add further restriction to privacy and confidentiality policies. For example, a
user may be authorized to get the data according to the confidentiality policies, but the system

 11

may not trust the individual in which case the data is not released. Similarly a person may give
permission to release certain private information about him or her but that person may not trust a
particular web site in which case the private information is not released to the web site.
Alternatively one could argue that one needs to establish trust first before establishing the
confidentiality and privacy policies. For example, a user’s (or web site’s) trust is established
before determining that the user (or web site) can received confidential (or private) information.
Release policies specify rules for releasing data while dissemination policies specify rules for
disseminating the data. Integrity within the context of security ensures that only authorized
individuals can modify the data so that the data is not maliciously corrupted [TSYB06]. We are
conducting extensive investigation on privacy preserving data mining [LIU05]. We are also
investigating the use of these techniques for AIS [LIU06].

Figure 2. Data Integration and Analysis

Security for relational databases has been studied extensively and standards such as secure SQL
(Structured Query Language) have been developed. In addition several secure data management
system products have been developed. There has been research on incorporating security into
next generation data management systems. There is also work on data quality as well as trust
management. Security has also been investigated for secure object request brokers as well as for
secure e-commerce systems. Finally W3C (World Wide Web Consortium) is specifying standards
for privacy such as the P3P (Platform for Privacy Preferences). While there is research on
incorporating security for semantic webs and heterogeneous data systems, this research is in the
early stages. There is an urgent need to develop operational systems that enforce security.
Furthermore, security has conflicting requirements with real-time processing. We need to enforce
flexible policies and subsequently standards for specifying these policies. Security is critical for
many of the information technologies we have discussed here. For a discussion of secure data
sharing and related standards we refer to [THUR05b].

Decision Support
S
E
C
U
R
I
T
Y

Other
Services
e.g ,
Integrity,
Data
Quality

Data and Information Integration

Multimedia, Geospatial, Semantic Web Technologies

P
R
I
V
A
C
Y

Active Distributed
Real-time Data time Data
Management

Data Warehousing
Data Mining
Knowledge Management

Structured Data
e.g., relations

Unstructured
Data, e.g., Text,
Geospatial

Semi-Structured
Data, e.g., XML,
RDF, OWL

 12

Security Policy Integration: There is a critical need for organizations to share data as well
process the data in a timely manner, but at the same time enforce various security policies. Figure
3 illustrates security policy integration in a coalition environment. In this example, A and B form
a coalition while B and C form a second coalition. A could be California, B could be Texas and C
could be Oklahoma. California and Texas could form a coalition as part of the larger states in the
US and Texas and Oklahoma could form a coalition as part of the neighboring states in the South
of US for emergency management. There is also an urgent need for multiple organizations to
share data and at the same time enforce security policies. These policies include policies for
confidentiality, privacy, and trust. For example, patient data may be shared by multiple
organizations including hospitals, levels of government and agencies. It is important to maintain
the privacy of patient data. However it is also important that there are no unnecessary access
controls so that information sharing is prohibited. One needs flexible policies so that during
emergency situations it is critical that all of the data is shared so that effective decisions can be
made. During normal operations, it is important to maintain confidentiality and privacy. In
addition, trust policies ensure that data is shared between trusted individuals. The standards
efforts in this area include Role-based access control (RBAC) [SAND96] as well as P3P
(Platform for Privacy Preferences). Our partners at George mason University are examining the
use of models such as RBAC and UCON for AIS [SAND06].

5. DEPENDABILITY ASPECTS

By dependable systems we mean systems that are fault tolerant and meet timing constraints. The
time-critical, information-sensitive goals of managing a crisis include actions such as the early
confirmation of cases and correct identification of exposed populations over a relevant time
period. Early confirmation means that triggers have to be activated when certain situations (such
as anomalies) occur. Suppose a hospital is flooded with 30 patients within 15 minutes who are all
reporting a temperature of 105 degrees. There has to be a rule such as “If more than 30 patients
register at a hospital within 20 minutes with temperature greater than 102 degrees then alert the
emergency response system”. To effectively process a large number of rules, we need active data
management. Furthermore, the various parties involved such as federal, state and local
governments have to be informed within a certain time. That is, if the authorities are notified after
say 2 hours then it will be difficult to contain the spread of the disease. This means we need real-
time data management capabilities. Some initial research on dependable and secure systems is
discussed in [KIM06a].

While there are techniques for active real-time data management, the challenge is to develop an
integrated system for end-to-end data management. For example, the data manager will ensure
that the data is current and the transactions meet the timing constraints. However in an emergency
situation there are numerous dependencies between different data sources. For example when rule
A gets triggered, that would result in rules C, D, and E getting triggered in multiple data
management systems. Such chain rule processing remains a challenge. We also need end-to-end
real-time processing. That is, in addition to the data manager, the infrastructure, the network and
the operating system have to meet timing constraints. This remains a challenge. Incorporating
security into real-time processing techniques remains largely unexplored. For example, in an
emergency situation, real-time processing and activating triggers may be more critical than
enforcing access control techniques. Furthermore, the system must ensure that the deadlines are
not missed due to malicious code and attacks (e.g., denial of service).

While integrity within the context of security implies that the data is not maliciously corrupted,
integrity also includes policies for data quality and data provenance management. Data quality
determines the accuracy of the data. This would depend on who updated the data, who owns the
data and what is the accuracy of the source of the data. That is, as data moves from organization
to organization, its quality may vary. Some measure to compute the quality of the data is needed.

 13

Data provenance is about maintaining the history of the data. That is, information as to who
accessed the data from start to finish is needed to determine whether data is misused [KIM06b].

Figure 3. Security Policy Integration and Transformation for Coalitions

6. BALANCING CONFLICTING REQUIREMENTS

There are two types of conflicting requirements: one is security vs. data sharing. The goal of data
sharing is for organizations to share as much data as possible so that the data is mined and
nuggets obtained. However when security policies are enforced then not all of the data is shared.
The other type of conflict is between real-time processing and security. The war fighter will need
information at the right time. If it is even say 5 minutes late the information may not be useful.
This means that if various security checks are to be performed then the information may not get
to the war fighter on time.

We are conducting research in both areas. For example, we are integrating the data in the
coalition databases without any access control restrictions and apply the data mining tools to
obtain interesting patterns and trends. In particular, we are developing associations between
different data entities such as “A and B are likely to be in a location 50 miles from Baghdad”.
Next we are using the same tool on the integrated data after enforcing the policies. We can then
determine the patterns that might be lost due to enforcing the policies (note that there is some
relationship between this work and the research on privacy preserving data mining). Our research
is described in [AWAD06].

In addition, we are conducting research on examining the extent to which security affects timing
constraints. For example, we enforce timing constraints on the query algorithms. That is, we first
process the query using the enforcement algorithms without enforcing any of the policies. Then
we enforce the security policies and determine whether the timing constraints can be met. This
will determine the extent to which security impacts timely information processing.

Component Policy
for Component A

Component Policy
for Component B

Component Policy
for Component C

Generic Policy
for Component A

Generic Policy
for Component B

Generic policy
for Component C

Export Policy
for Component A

Export Policy
for Component B

Export Policy
for Component C

Coalition Policy
for Coalition

F1

Coalition Policy
for Coalition

F2

Export Policy
for Component B

 14

Our goal is to develop flexible approaches and balance conflicting requirements. That is, if timely
processing of data is critical then security has to be relaxed. Similarly say during non combat
operations, security will have to be given full consideration. The same applies for data sharing vs.
security. If during an emergency operation such as say the operation just before, during or soon
after Hurricane Katrina, then several agencies will need the data without any restrictions.
However during non emergency operations, security policies need to be enforced. Our research is
reported in [KIM06c]. In particular, we are examining the application of RBAC and UCON
models for timely data sharing.

Another aspect of our research on AIS is risk analysis. For example, if the security risks are high
and the cost to implement security features are low, then security should be given high
consideration. If the risks are low and the cost is high, one needs to evaluate whether it is worth
the effort and cost to incorporate security. Our research on risk based access control is reported in
[CELI06].

7. GAME THEORY APPLICATIONS AND SEMI-TRUSTWORTHY PARTNERS

In the previous sections we assumed that the organizations were trustworthy and would enforce
the policies while data sharing. However in many cases the organization may be semi-honest or
completely dishonest. In the case of semi-honest partners, organizations may have to play games
to extract data. In the case of dishonest and untrustworthy partners, one may not only have to
defend against malicious code, but also have to figure out what the partner is up to by monitoring
his machine. In this section we will address semi-trustworthy partners and in the next we will
discuss untrustworthy partners.

Semi-Honest Partners and Game Playing

To handle secure data sharing especially with semi-trustworthy partners, modeling the query
processing scenario as a non cooperative game may be more appropriate especially between two
partners. The players are the partners, which could be agencies or countries of a coalition. Lets
assume we have Agency A and B as two partners. The objective of agency A is to extract as
much information as possible from agency B. Essentially agency A wants to compromise
information managed by Agency B. B’s goal is to prevent this from occurring. Cooperative
games on the other hand may have applications among friendly partners of a coalition. A mixture
of cooperative and non-cooperative strategies may be applied for multi-party coalition.

Two-party information sharing: Information sharing between two agencies A and B may be
modeled as a non-cooperative game. A has a specific objective; for example, it may know that B
has some sensitive data and it wants to extract the value of that data from B. B knows A’s
objective. A move made by A is a query. A move made by B is the response. The game continues
until A achieves its objectives or gets tired of playing the game. As stated in [JONES80], the
game can be represented as a graph theoretic tree of vertices and edges. The tree has a
distinguished vertex, which is the initial state. There is a payoff function, which assigns a pair of
values say (X,Y) where X is the payoff for A and Y is the pay for B for each move. The payoff
for A is high if it is close to obtaining the sensitive value. The payoff for B is high if the response
does not reveal anything about the sensitive value. Note that if B does not give out any
information or if it gives erroneous information then it cannot be regarded as a game, That is, the
aim here is for B to participate in the game without giving away sensitive information.

Multi-party information sharing: The idea here is that certain parties play cooperative games
while certain other parties play non-cooperative games. We illustrate with an example consisting
of three parties. Let’s consider an example. Suppose the year is 2006 and the UK has obtained
some sensitive information on Operation Iraqi Freedom that the US needs. However, the UK is
reluctant to share this information. The US in the meantime has formed an alliance with

 15

Argentina by giving some incentive either in the form of money or weapons. When the UK hears
this, it is concerned thinking about the Falklands situation. However, in reality the US has no
intention of doing anything about the Falklands but does not want the UK to know the truth. So
the UK may reason about the benefits it receives by sharing the data with the US and makes a
determination.

Cooperative games have also been called Coalition games. In a true coalition the players are
friendly and therefore share the information and determine a collective payoff. However in our
environment, organizations form coalitions only to solve a particular problem. An agency that is a
trustworthy party in a particular coalition may turn against its partner at a later time and divulge
the information gathered during the coalition operation.

We have conducted some initial research on game theory applications for AIS. Our objective has
been to consider the interaction of participants within a loose coalition. In particular, we are
interested in a scenario in which those involved have made a reluctant but necessary decision to
trade information to achieve some goal. A great deal of work has already been done in the areas
of secret sharing and protocol enforcement. However, even if agreements to exchange are kept,
there is no guarantee what is shared is legitimate. The ultimate goal of this research is to create a
behavior which works optimally against lying agencies while taking advantage of implicit trust.
Our results at this point in the research suggest our algorithm is effective against basic opponents,
though more refinement is needed. We report which behaviors work for the players and why,
with regards to the motivating factors for each strategy. Our research will be described in
Volume 3 of these series [LAYF06].

8. HANDLING UNTRUSTWORTHY PARTNERS

Note that in fighting the global war on terrorism we have to work with our allies as well as with
countries that we may not trust. If our partners our untrustworthy, then we have to not only
defend against malicious code but also figure out what the partners are doing both with their
computers as well as their activities. Essentially we need to conduct information operations
[SPIT02]. We will first discuss our research on defensive operations and then discuss some
aspects of offensive operations.

Defensive Operations: In the case where partners are untrustworthy we have to defend ourselves
against malicious code such as viruses and worms planted by our partners. In order to accomplish
this, we are applying data mining techniques to detect such malicious code. Some of our research
in this area can be found in [MASU06] and will be published in Volume 4 of these series
[KHAN06].

Offensive Operations: There is little work in the unclassified published literature on offensive
operations. However recently we are seeing articles published in Signal magazine on the
importance of monitoring the adversaries’ computing activities [SIGN05a], [SIGN05b]. Three of
the techniques for handling untrustworthy partners include the following:

Trojan Image Exploitation: Modern anti-virus and anti-spy ware detection packages rely on the
presence of malicious code within an executable or script to prevent attacks. This is done by
detection methods that are carried out when the program first loads. In theory, it is possible to
circumvent this detection by designing a program without any explicit malicious code; instead, a
memory leak in this program’s security is purposefully created. This weakness is exploited by
downloading a tailored file from the Internet, such as a picture, after the program is loaded. As a
result, this program could be used as a staging area for a malicious attack.

Web Browser Customization: Web browsers have been enhanced dramatically in the past year
to prevent attacks from malicious web pages. For the benefit of the user, these features are
frequently made optional, allowing a great deal of customization. By compromising a user’s

 16

customization features covertly, it becomes possible to execute potential attacks without the user
detecting any warning signs normally visible in the user’s browser such that the attacker’s
methods can be hidden from the user. The attacker could use browser customization, such as
enabling JavaScript, to create a shadow copy of the web and gain classified information from the
victim without certain warning signs, such as URLs being correctly displayed. All user-entered
information would be funneled through the attacker’s spoofed world and thus the attacker could
easily take advantage of the situation in order to retrieve any type of information.

Message Interception: Enron data set (publicly available) may be used to send emails to the
partners of the coalition as well as to those outside of the coalition. Messaging may be simulated
in such a way that they are sent at random intervals. We can then determine whether interception
techniques can be used to extract some of the messages sent. This is a very challenging problem.

9. SERIES OF REPORTS

As we have stated in section 1, this paper is the first in a series of papers we will publish as part
of the AIS. In this section we briefly discuss the contents of some of the other reports. Note that
the research is sponsored by grants from different organizations including AFOSR.

Experimental Analysis: In this report we will discuss the experiments we are conducting on how
much information ism lost by enforcing security policies in a coalition environment.

Game Theory Applications: In this report we will discuss the application of game theoretic
techniques for extracting information when partners are semi-trustworthy.

Defensive Operations: In this report we will discuss our approach to defending the systems from
worms when the partners are untrustworthy.

RBAC for AIS: In this report our partners at GMU will discuss the application of Role-based
access control for assured information sharing.

Offensive Operations: In this report we will discuss techniques for finding out the activities of
untrustworthy partners.

We are conducting research in related topics that will support AIS. Some related reports that we
will publish include the following:

Risk-based access control: In this report we will discuss data sharing when taking security risks
into consideration.

Data provenance: In this report, we will use healthcare applications as an example and discuss
data provenance issues for AIS.

Dependable Data Sharing: In this report we will describe our approach to systems meeting
security as well as real-time requirements.

Standards: In this report we will discuss data integration standards for AIS.

Privacy Preserving Data Sharing: In this report we will discuss data sharing and at the same
time ensuring privacy of the individuals using healthcare applications.

Geospatial data: In this report we will discuss assured information sharing for geospatial and
unstructured data.

Semantic web: In this report we will explore the use of semantic web technologies for AIS

Social network analysis: In this report we will examine how organizations form networks and
discuss approaches for supporting AIS.

 17

Infrastructure: In this report we will investigate how infrastructures such a data grids support
AIS.

In addition to the above reports, we will also publish reports on the implementation of the designs
of systems for AIS. For example, implementation of the systems we have designed for geospatial
data sharing, risk-based access control and game theory applications will be described in future
technical reports.

10. SUMMARY AND DIRECTIONS

In this paper we have defined Assured Information Sharing (AIS) and discussed issues,
technologies, challenges and directions for this area. The goal of AIS is for organizations to share
data but at the same time enforce security policies. Security includes confidentiality, privacy,
trust, and integrity policies. We discussed approaches for AIS when the partners of a coalition are
trustworthy, semi-trustworthy and untrustworthy. In particular, we discussed security policy
enforcement, game theory applications and defending against worms and viruses. We also
discussed AIS technologies including data integration, data mining, and the semantic web.

There are several areas that need further investigation. We need to develop policies for
accountability. This is especially important in a coalition environment. In such an environment,
there are numerous pieces of hardware and software that interact with each other. Therefore, the
action of all the processes has to be recorded and analyzed. Furthermore, risk analysis studies are
needed to determine the risks and developing appropriate solutions. For example, in a high risk
low cost security environment, there will be no questions about implementing security solutions.
However in a low risk high cost environment one needs to think twice before enforcing the
security policies. Essentially we need some form of risk-based AIS. We also need to develop web
services for AIS. Essentially we need to integrate AIS and semantic web technologies. Finally we
need to investigate several additional technologies such as collaborative services, social network
analysis, surveillance data sharing, digital identity management, metadata extraction and
management as well as policies for identification and authentication for AIS. We also need to
investigate the use of standards as well as infrastructures such ass data grids for AIS. Some of our
preliminary research in some of these topics is reported in [THUR05b], [ZHU06], [LAVE05],
[LAYF05].

We are conducting extensive investigation on AIS with our partners George Mason University
and Purdue University. In addition to the technical aspects discussed in this paper, we are also
investigating the connection between AIS and the Global Information Grid as well as Network
centric Operations. While our primary application is counter-terrorism, we are also focusing on
other applications such as Emergency preparedness and Healthcare. Future papers will focus on
the design of our approaches as well as our experimental results for AIS.

ACKNOWLEDGEMENTS

I thank Dr. Robert Herklotz for funding our research on Information Operations Across
Infospheres which supported much of the research discussed in this paper. I thank my colleagues
Profs. Latifur Khan, Murat Kantarcioglu, Ravi Sandhu and Elisa Bertino as well as Dr. Mamoun
Awad and Dr. Ebru Celikel for discussions and inputs on AIS. I also thank my students Ryan
Layfield, Nathalie Tsybulnik, Li Liu, Alam Ashraful, Ganesh Subbiah, Gal Lavee, Srinivsan Iyer,
Dilsad Cavus and Kim Jungin as well as many others for discussions on AIS, and especially Ryan
Layfield, Nathalie Tsybulnik and Li Liu for writing the techniques for information operations in
section 8.

 18

REFERENCES

[AWAD06] M. Awad, B. Thuraisingham, and L. Khan, et al, Assured Information Sharing:
Volume 2: Experimental Analysis of Data Integration, Mining and Security, Technical Report,
The University of Texas at Dallas, 2006 (to appear)

[ASHR06] A. Ashraful, G. Subbiah, L. Khan, and B. Thuraisingham, Geospatial Semantic Web,
Technical Report, The University of Texas at Dallas, 2006 (to appear).

 [BERT04] E. Bertino, B. Carminati, E. Ferrari and B. Thuraisingham, Secure Third Party
Publication of XML Documents, IEEE Transactions on Knowledge and Data Engineering,
October 2004

[CELI06] E. Celikel, M. Kantarcioglu and B. Thuraisingham, Assured Information Sharing: Risk-
based Data Sharing, Technical Report, The University of Texas at Dallas, 2006 (to appear)

[JONE80] A. Jones, Game Theory, Mathematical Models of Conflict, Halstead Press, 1980.

[KHAN06] L. Khan, B. Thuraisingham et al, Assured Information Sharing: Volume 4: Data
Mining Applications for Defensive Operations in a Coalition, Technical Report, The University
of Texas at Dallas, (to appear).

[KIM06a] J. Kim and B. Thuraisingham, Dependable and Secure TMO Scheme, Proceedings of
IEEE ISORC Conference, April 006.

[KIM06b] J. Kim, B. Thuraisingham, et al, Data Provenance in Healthcare Systems: Survey and
Research Issues, UTD Technical Report, to appear.

[KIM06] J. Kim and B. Thuraisingham, Applying RBAC and UCON to TMO, Technical report,
University of Texas at Dallas, to appear.

[LAVE05] G. Lavee et al, Suspicious Event Detection with Surveillance Data, Proceedings of the
ACM SIGKDD Conference Workshop on Multimedia Data Mining, 2005.

 [LAYF05] R. Layfield, et al, Design of a Social Network Analysis System, Proceedings of the
ACM SIGKDD Conference Workshop on Multimedia Data Mining, 2005.

[LAYF06] R. Layfield, M. Kantarcioglu and B. Thuraisingham, Assured Information Sharing:
Volume 3: Using Game Theory to Enforce Honesty Within a Competitive Coalition, Technical
Report, The University of Texas at Dallas, 2006 (to appear)

[LEE01] Berners Lee, T., et al., The Semantic Web, Scientific American, May 2001.

[LIU05] L. Liu, M. Kantarcioglu, N. Thuraisingham, L. Khan, An Adaptable Perturbation Model
of Privacy Preserving Data Mining, Proceedings of the IEEE ICDM Data Mining Conference
Workshop on Privacy preserving Data Mining, 2005 (also published as technical report, UTDCS-
03-06, January 2006).

 [LIU06] L. Liu, et al, Privacy Preserving Data Sharing, Technical Report, The University of
Texas at Dallas, 2006 (to appear)

[MARK03] Creating a Trusted Network for Homeland Security, Markle Report, 2003 (Editor: M.
Vatis)

[MASU06] Masud, M, L. Khan, B. Thuraisingham and M. Awad, Detecting New malicious
Executables Using Data Mining, UTDCS-27-06 Technical Report, The University of Texas at
Dallas, June 2006, also submitted for publications. (version to be published as UTD AIS
Technical Report series)

 19

[NCW05] The Implementation of Network Centric Warfare, Office of Force Transformation,
2003.

[OLIV95] Martin S. Olivier: Self-protecting Objects in a Secure Federated Database, Proceedings
of the IFIP Database Security Conference, NY, August 1995.

[SAND96] Ravi Sandhu, Edward Coyne, Hal Feinstein and Charles Youman, “Role-Based
Access Control Models.” IEEE Computer, Volume 29, Number 2, February 1996.

[SAND06] R. Sandhu et al, RBAC for AIS, to be published as AIS Technical Report Series,
2006.

 [SIGN05a] Signal Magazine, AFCEA, May 2005

[SIGN05b] Signal Magazine, AFCEA, February 2005

 [SPIT02] Lance Spitzner, Honeypots, Tracking Hackers, Addison Wesley, 2002.

[SON95] S. Son, R. David and B. Thuraisingham, An Adaptive Policy for Improved Timeliness in
Secure Database Systems, Proceedings of the 9th IFIP Working Conference in Database Security,
New York, August 1995.

[THUR90] B. Thuraisingham, Novel Approaches to the Inference Problem, June 1990,
Proceedings of the 3rd RADC Database Security Workshop, New York.

[THUR94] B. Thuraisingham, Security Issues for Federated Database Systems, 1994, Computers
and Security (North Holland), December 1994.

[THUR98] B. Thuraisingham, Data Mining: Technologies, Techniques, Tools and Trends, CRC
Press, December 1998.

[THUR99] B. Thuraisingham and J. Maurer, Information Survivability for Real-time Command
and Control Systems, IEEE Transactions on Knowledge and Data Engineering, January 1999

 [THUR03] B. Thuraisingham, Web Data Mining and Applications in Business Intelligence and
Counter-terrorism, CRC Press, Boca Raton, FL, 2003.

[THUR05a] B. Thuraisingham, Security Standards for the Semantic Web, Computer Standards
and Interfaces Journal, 2005.

[THUR05b] B. Thuraisingham, Database and Applications Security: Integrating Information
Security and Data Management, CRC Press, May 2005

[THUR06] B. Thuraisingham, D. Harris, L. Khan, R. Paul, “Standards for Secure Data Sharing
across Organizations,” Accepted in Computer Standards and Interfaces Journal, 2005. (version to
be published as part of UTD AIS technical report series)

[TSYB06] N. Tsybulnik, B. Thuraisingham, A. Ashraful, CPT: Confidentiality, Privacy and Trust
for the Semantic Web,UTDCS-06-06, Technical Report, the University of Texas at Dallas, March
2006, Also to appear in the Journal of Information Security and Privacy.

[ZHU06] J. Zhu, B. Thuraisingham, Grid Computing and Grid Security, Technical; Report, The
University of Texas at Dallas, to appear. (also published in International Journal of Computer and
Network Secuirty, August 2006).

 20

Report #2
Design and Implementation of Policy Enforcement, Data Sharing and
Mining Components for Trustworthy Coalitions
Mamoun Awad, Latifur Khan, Dilsad Cavus, Bhavani Thuraisingham

The University of Texas at Dallas

Published as Technical Report UTD-CS-44-06

Abstract

Sharing data among organizations plays an important role in security and data mining. In this
study, we present Data Sharing Miner and Analyzer (DASMA) system that simulates N
organizations. Each organization has its own enforced policy. The N organization share their data
based on trusted third party. The system collect the released data from each organization, process
it, mine it, and analyze the results. Mining is based on applying Association Rule Mining.
Analyzing is the process of measuring the differences between mining with enforced policy and
mining the data as a whole.

Sharing in DASMA is based on trusted third parties. However, organization might choose to
encode some attributes, for example, by categorizing numeric data instead of providing the exact
data values. Also an organization can provide randomized data in which random values for some
attributes are added. Each organization has it own policy represented in XML format. The policy
states what attributes they can release, what attributes they need to encode, and what attributes
they need to randomize. DASMA processes the data set and collect the data, combine it, and
prepare it for mining. After mining a statistical report is produced stating the similarities between
mining with data sharing and mining without sharing.

We test, apply data sharing, enforce policy, and analyze the results of two separate datasets in
different domains. Our results indicate a fluctuation on the amount of information loss using
different releasing factor.

1. Introduction

Data sharing among organization has become a critical research topic. Sharing data

among organization is governed by the sharing policies maintained and enforced by the
organization rules and by the government laws. As a result of that, the amount of information
used, in any certain sharing scenario among organization, is smaller than or equal to the whole
information maintained in all such organizations.

In this research, we study the effect of information hiding on the amount of knowledge

obtained using standard machine learning techniques. Hiding information is represented by the
policies and regulations enforced by the organization. We introduce the releasing factor measure
that indicates the percentage of attributes an organization releases to the total number of attributes
such organization has. For mining the shared data , we consider Association Rule Mining.

It is important to point out that, in this study, we assume that all organizations are trusted

parties. However, each organization abides by its policies and rules in order to release data. For
each organization, we develop sharing policies that govern what kind of data an organization can
release. For example, a medical organization, can release information about blood pressure and
temperature of patients. However, it cannot release type of illness each patient has.

 21

Also, we try to simulate a realistic scenarios of data partitioning. For example, for a

specific entity, such as patient, one organization, such as the hospital, might have attributes/fields
about the patient medications. However, for another organization, such as insurance companies,
such fields are missing. We consider three different partitioning of the attributes, namely,
horizontal, vertical, and hybrid partitioning. In horizontal partitioning, we simulate the scenario in
which one organization has all fields/attributes about some entities. In vertical partitioning, an
organization knows all entities, however, it has some of the fields/attributes about each. In hybrid
partitioning, we assume horizontal and vertical knowledge about entities and attributes/fields, i.e.,
some entities are know totally or partially by some organizations. Notice that data partitioning is
related to the layout of the data (see Section 2 for details). It is also important to point out that we
assume that there is a fixed set of attributes/fields about entities.

After partitioning the dataset, we assume a centralized trust broker, which request the

information from different parties and mine the data. When the broker requests data from an
organization x, organization x will apply its policy first, and then send a compliant data, with x
policy, to the broker (See Figure 1).

Figure 1 communications between the broker and an organization

The process of mining shared data among organization poses several challenges related to

the automation of data sharing. First, data disclosure might not be possible because organizations
are limited to their sharing policy, i.e., an organization might not release all the data that it has
because, for example, of privacy issues. Next, data reprocessing as a result of discrepancies of the
format, representation, scales, etc. of the data among organizations. Finally, human intervention
to resolve issues such as mapping data from one organization data base to another. That is
because it is possible that two attributes has the same names, however, different meaning and vice
versa.

In this study, we randomly partition the data (using three schemes, namely, horizontal,

vertical, and hybrid partitioning) among N organizations. In order to resolve the issue of data
disclosure, we create several test cases with increasing releasing factor. For example, we create
25 test cases 1, 2, 3, 4, …,25 and applied releasing factors 1, 4, 8, 12, …,100 for each test case,
respectively. We do not try to solve the problem of mismatch in the formatting of the data among
organizations; however, we introduce an xml based framework that can be extended later to
handle such mismatch.

 22

The report is organized as follows. Section 2 presents the data partitioning schemes we
use. Section Error! Reference source not found.

2. Data Partitioning

2.1 Overview
 In this section, we describe and explain the different schemes of partitioning data. Since
we do not have real time shared data, we try to partition a dataset among N imaginary
organizations. There are several ways to share the data. The data is distributed among different
organizations with three different scenarios. We discuss the various types of partitioning in the
ensuing subsections.

2.2 Horizontal Partitioning
 In the horizontal partitioning an organization has all records/information about some
entities (such as persons). Figure 2 presents an example of such partitioning in which we have
four organizations sharing information about persons. The first row in Figure 2 s the name of
attributes/fields about people, for example, here we have the following attributes: SSN, data of
birth, credit history, annual income, occupation, and auto insurance company. The rest of the
rows represent records about different persons. Notice that each organization has all the
attributes/fields about some persons; however, it lacks information about other persons in the
dataset. Also, in this partitioning, some records can be redundant in more than one organization.
One realistic scenario of such partitioning is the case in which department of vehicles in Texas
has all the records about people in Texas, however, it does not have any of such information
about people in California and vice versa.

Figure 2 Horizontal partitioning

2.3 Vertical Partitioning
 In vertical partitioning each organization has part of the fields/attributes about some
entity in the dataset. For example, in a dataset of patient records, an insurance organization knows
specific attributes about the patients such as their ids, cost of treatment, drug used, duration of
treatments. However, such insurance organization has no specific information about the illnesses,
readings (blood pressure, sugar level, etc.). Figure 3 presents an example of vertical partitioning
for the same dataset used in Figure 2. Notice that some organization such as organization 1 has
only information about SSN and date of birth. Organization 4 has information about the annual
income, occupation, and the auto insurance company. In real time scenario, there might be
different ID used for each person. For example, Department of Motor Vehicles might use driver
license to identify a person, on the other hand FBI might have both driver license and SSN and
use both to identify persons. In this study, we assume that there is a unique id that identifies each
person, and all organizations are using this id.

 23

Figure 3 Vertical Partitioning

2.4 Hybrid Partitioning
Hybrid partitioning is the combination of vertical and horizontal partitioning. This means that an
organization might have a complete record about some entities, however, it lacks some of the
attributes about others. Such lack of information presents optional information, such as race, age,
etc. So, it is up to the person to provide it or not; hence, it might be available or unavailable.

Figure 4 Hybrid Partitioning

Figure 4 present an example of hybrid partitioning of a dataset among four organizations. The
question mark in Figure 4 denotes unknown field value. Notice that some records are complete in
some organization, for example, organization 4 has all the fields of record number 10. However,
organization 4 lacks some attributes, such as occupation, of record number 6.

3. Policy Representation and Enforcement
3.1 Overview

In this section, we present the representation of organization policy and the details of
enforcing them. But before we present that, we introduce some terminology and definitions.

 24

Policy
In this section, we refer to policy as an xml document that is mainly designed to inform which
attributes can be released. Figure 5 presents a policy of an organization in which such
organization can only release the attributes of type of employment, county of birth, and income
type for each record it has about people. Such scheme can be extended to include encoded data or
randomized data, i.e., what are that attributes that we should encode them (using randomization)
before releasing them.

Figure 5 example of xml policy

Release Factor
The release factor is the percentage of attributes which are released from the dataset by an
organization. For example, assume we have a dataset that has 40 attributes and “Organization 1”
releases 8 attributes. The release factor in this case is 8/40=20%. Here, we use the release factor
to analyze the amount of information loss as a result of sharing and applying policies.

3.2 POLICY STRUCTURE AND DETAILS
In this section, we present the structure of the xml files that we used to configure

partitioning and policy enforcement.

Figure 6 an example of an xml file used for partitioning and sharing.

 25

Figure 6 present an example of partitioning a dataset among three organizations. In the
top part of the xml file, noted by organization information, we state the number of organizations,
and each organization id and its releasing policy. Each releasing policy file is an xml file which is
similar to Figure 5, in which we define the attributes/fields that we can release.

The second part of the xml in

Figure 6 is a details about the dataset file, dataset preprocessor, and meta data about that. Table 1
presents the name and definition of each xml tag in the configuration xml file.

Table 1 Xml tags names and their definitions.
Xml tag Definition
ORG_ID Unique organization id.
XML_POLICY The xml file that contains policy, see Figure 5.
NUM_ORG The number organization involved in data

sharing.
Dataset Information
DATASET_FN The dataset file name including its path.
ARFF_PREFIX The arff prefix file name.
TEST_CASE_ID A unique id for the test case generated.
Dataset Processor
CLASS_NAME Java class name of the processor dedicated for

this dataset.
ATTRIB_FN The file name that contains all the attributes in

this dataset along with their types (for example,
nominal, binary, etc.)

POLICY_DIR The directory where the xml policies of the
organizations reside in.

DELIM The delimiter used to separate fields in the
dataset.

Notice that we randomly assign a record to an organization. Once all records are assigned to
organizations, we start applying the policy of that organization. In the GUI, the user can choose
the type of data partitioning (see Figure 7). Notice that the use use the browse xml button to find
his policy file, then from the drop box, the user can choose either horizontal, vertical, or hybrid
partitioning.

Notice that in the previous xml configuration file, we did not mention the releasing factor. That is
because each test case is a single test case that is specific for a set of attributes provided by the
user. Alternatively, the user can choose batch processing, in which she chooses the releasing
factor step and the GUI generates a set of test cases. In other words, the system will generate a set
of xml files similar to

Figure 6. In this study, we adopt the batch processing because, first, we need large number of test
cases. Next, each test case should represent different releasing factor. Finally, we need to see the
effects of different releasing factor on the information loss.

Figure 8 presents an example of xml file used in batch processing. In addition to the xml tags
Figure 6, we added few xml tags to indicate the releasing factor step, template information for
xml generation, and policy directory to build the directory structure of the test cases (See Table 2
). Notice that the RELEASE_FACTOR indicates the step of increasing the number of attributes.
For example, if the RELEASE_FACTOR is 10, that means we will generate 10 test cases from 1

 26

to 10 and the number of attributes released for all organization in these test cases is 10, 20 , 30,
40, 50, …, 100%, respectively. The MANDATOY_ATTRIB is the list of attributes that all
organizations have to release. This is very convenient because it allows the system to enforce a
unique id to be released; hence, it can connect different attributes from different organizations
and remove duplicates. Figure 9 presents the list of test cases generated from
Figure 8.

Figure 7 Processing dataset and policy enforcement GUI

4. Data Sharing

4.1 Overview
The data sharing happens among N organizations with three different partitionings (horizontal,
vertical and hybrid). The dataset is divided into N parts randomly so that each organization has its
own dataset. We used 3 different organizations for each test case, so that each partition uses its
own partitioned dataset. i.e If the dataset’s file name is dataset.dat, the dataset will be randomly
distributed into three data files and named horizontal_dataset_org1.dat,
horizontal_dataset_org2.dat and horizontal_dataset_org3.dat for horizontal partitioning. The same
dataset will again be partitioned for vertical and hybrid partitionings.

4.2 Using the Policies:
Our gui uses several policies to get information. It starts with a policy named
<dataset_file_name>_<release_factor>.xml. i.e census_income_10.xml

There are two parts in the policy. The first part of the xml policy shows how to name the
directories and prefixes to eliminate overwriting, and uses some policies about the information
that is needed to process the dataset. The second part is related to batch processing and
partitioning. So we are going to explain the first part which is not related to the programming
part. Before starting to explain the elements of the xml policy, let’s assume that we have created a
new project file named NewProj under H directory. The command prompt looks like this:
H:/NewProj

 27

We will create new folders to save what we process and keep them in an understandable
hirerarchy. i.e. The files related to dataset will be under the “dataset” folder, and the policies will
be under the “policy” folder.
Now, let’s get started with the XML file shown above. The first line of the file is an XML
declaration.
 <?xml version="1.0"?>

Figure 8 xml file used in batch processing.

Table 2 additional xml tags used in batch processing

Xml tag Definition
RELEASE_FACTOR The step in which we increase the releasing

factor for the next test case.
MANDATORY_ATTRIB Mandatory attributes to be included in the

releasing policy of all organizations.
TEMPLATE_FN A template file used to generate organization

policies.
TC_ID Unique batch test case id.
TEST_CASE_DIR The test case directory name.

Every XML file starts with an “XML declaration”, which indicates several pieces of information
that is used to parse the file. "1.0" is the XML version number which is the only official version
of the XML specification.
The policy starts in the second line with “TEST_CASE” element. This element is the root of the
tree which contains all the information in the file.

 28

The BASE_POLICY_DIR element contains the name of the directory/ies which is going to be
created under our project. The command prompt line will look like this.
H:/NewProj/data/policy/
The next line specifies some comments using <!—and --> syntax.

Figure 9 generated test cases for

Figure 8

Figure 10 batch processing GUI

TC_ID is the test case id which is related to the xml policy file name. This folder is created under
BASE_POLICY_DIR. The preferred name for the test case id is “dataset name”_”release
factor number” as shown in Error! Reference source not found..
TEST_CASE_DIR contains the name of another folder which is created under TC_ID.
NUM_ORG keeps the number of organizations and RELEASE_FACTOR keeps the release factor
number.

 29

ATTRIB_XML contains each column name and its potential values in the dataset. The sample
example for this policy is seen in Sample Policy (Figure).

<?xml version="1.0"?>
<ATTRIBUTES>
 <ATTRIBUTE>
 <ATTRIB_NAME>gender</ATTRIB_NAME>
 <ATTRIB_TYPE>Female;Male</ATTRIB_TYPE>
 <ATTRIB_NAME>age</ATTRIB_NAME>
 <ATTRIB_TYPE>0:100</ATTRIB_TYPE>
 </ATTRIBUTE>
</ATTRIBUTES>
Figure 11. Sample Policy

Here, ATTRIB_NAME gives us the name of the attribute, ATTRIB_TYPE gives the attribute
values. The consecutive values are separated by “:”, the other types are separated by “;”
Let’s go back to our first XML policy. The element of the next line, DATASET_BASE has the
name of a new set of folders which is created under the “NewProj” directory. This directory
contains attributes.xml and the original dataset.
MANDATORY_ATTRIB keeps the name of the attribute which is used by all the organizations. If
there are more than one mandatory attributes, this element can be used more than once.
POLICY_XML will be explained after the definition of TEMPLATE_FN element.
The number of organizations are given in NUM_ORG, let’s say it’s 3. There will be 3
organizations which releases attributes. These organizations must have different names. The
naming is generated by the program using a prefix which is given in ORG_PREFIX element.
The new xml files will be named like this, org_1, org_2, .. org_N
DATASET_FN contains the original dataset file name.
ARFF_PREFIX is the prefix of a folder name which is generated for different test cases. The
generated test case and its number is attached as a suffix to this name.
As we said before, part 2 is related to the programming part, however the element named
TEMPLATE_FN has the XML file name which helps the program generate the “gen_org.xml”
defined in POLICY_XML element.

Here’s an example for TEMPLATE_FN file. (Figure 12)

<?xml version="1.0"?>
 <ORGANIZATIONS>
 %ORGANIZATIONS%
 <NUM_ORG>%NUM_ORG%</NUM_ORG>
 <DATASET_FN>%DATASET_FN%</DATASET_FN>
 <ARFF_PREFIX>%ARFF_PREFIX%</ARFF_PREFIX>
 <TEST_CASE_ID>%TEST_CASE_ID%</TEST_CASE_ID>
 <DATASET_PROCESSOR>
 <CLASS_NAME>%CLASS_NAME%</CLASS_NAME>
 <ATTRIB_FN>%ATTRIB_FN%</ATTRIB_FN>
 </DATASET_PROCESSOR>
 <POLICY_DIR>%POLICY_DIR%</POLICY_DIR>
 <DELIM>%DELIM%</DELIM>
 </ORGANIZATIONS>
Figure 12. Example Template

 30

 gen_org.xml files in all of the test case folders will be a copy of this file except the
values between “%”. Those values will be generated by the program. The sample for
POLICY_XML file is shown in Figure 13.

Figure 13. Policy File

As it is seen above, some of the elements are rewritten due to the number of organizations.

<?xml version="1.0"?>
 <ORGANIZATIONS>
 <ORGANIZATION>
 <ORG_ID>1</ORG_ID>
 <XML_POLICY_FN>org_1.xml</XML_POLICY_FN>
 </ORGANIZATION>
 <ORGANIZATION>
 <ORG_ID>2</ORG_ID>
 <XML_POLICY_FN>org_2.xml</XML_POLICY_FN>
 </ORGANIZATION>
 <ORGANIZATION>
 <ORG_ID>3</ORG_ID>
 <XML_POLICY_FN>org_3.xml</XML_POLICY_FN>
 </ORGANIZATION>

 <NUM_ORG>3</NUM_ORG>
 <DATASET_FN>census_income/census_income_50k.dat</DATASET_FN>
 <ARFF_PREFIX>census_income</ARFF_PREFIX>
 <TEST_CASE_ID>census_income_test_10_1</TEST_CASE_ID>
 <DATASET_PROCESSOR>
 <CLASS_NAME>processors.CensusIncomeProcessor</CLASS_NAME>
 <ATTRIB_FN>census_income/attributes.xml</ATTRIB_FN>
 </DATASET_PROCESSOR>

<POLICY_DIR>census_income_10/testcases/test_case_1</POLICY_DIR>
 <DELIM>,</DELIM>
 </ORGANIZATIONS>

 31

5. System Manual

MainGUI:

The Main GUI Chooser window is used to launch PD&M graphical environments. Main Window
has three buttons:
1. Load and Analysis. Provides a simple GUI interface that allows loading the already generated
rules and analyze rules by displaying the charts.
2. Run ARM. Provides an interface to choose the arff file and run Apriori algorithm, and displays
the association rules, frequent item sets and their confidence.
3. Process DataSet: Provide the chooser window to select Single Processing dataset or Batch
Processing.

Figure 1: Main GUI.

Load and Analysis:
Click on this refres to
Figure 2.

Run ARM:
Click on this refers to Figure 3.

Process DataSet:
Click on this refers to Figure 4.

 32

Load And Analysis:

Figure 2: Load and Analyze GUI.

Analyze:
On Click of this button runs
the analysis of the test case
policy’s selected from the
file.

DisplayChart:
Displays graph from
analyze file selected. Refer
to Figure 8 for more
details.

Message:
Displays the content of the
file selected for analysis
and display chart.

Browse1:
On Click of this button
chooses a .dat file.

Browse2:
On Click of this button
chooses a ana/analysis
file.

 33

RunArm:
This GUI allows a user to select the preprocessed .arff file and select the options required
for the association rules(for more about the options refer to figure 7). Buy clicking Run
ARM button the Apriori association rule algorithm is applied to the selected file with
options selected.

Figure 3: Run ARM GUI.

Browse:
Select the .arff file to
which the association rule
algorithm is applied.

Run ARM:
On click of this button will
execute Apriori algorithm
and corresponding rules and
frequent item sets are
displayed.

Options:
 Click on this Options dialog
box displayed where user can
modify options. Refer to
Figure 7 for details

Frequent Sets:
This window displays list of all
Frequent itemsets on applying Apriori
algorithm

Statistics:
This window displays the itemset
sizes, confidence and support.

Association Rule and
Confidence:
 This window displays rules
returned by the apriori
algorithm and their
corresponding confidence.

 34

Main Process Data Set:

Figure 4: Main Process Data Set GUI.

Single Processing Data:
On Click of this button will display
Process Data Set.
For details Refer to Figure 5.

Batch Test cases Processing:
On Click of this button will Batch
test case processing window.
For details refer to Figure 6.

 35

Process DataSet:

Figure 5: Process Dataset GUI.

Browse XML:
Click on this button select
the xml file to be
processed.
Refer to xml schema from
section 1.4.

Partition Type:
Select the type of partition:
Horizontal or Vertical or
Horizontal and Vertical.
Refer section 1.2 for more
details on options.

Run Policy:
Click on this button runs the
policys based on xml file
selected and partition type.

 36

Batch Test Cases Processing:

Figure 6: Batch Processing GUI.

Browse:
On Click of this button select the
policy’s xml file for partitioning.

Partition:
Paritions based on the attributes set in the xml
file. Such as number of organizations, release
factor etc.. for more details refer to section 1.5

Options: On click of this
button will display
options panel. Refered to
Figure 7.

Display File Data:
Displays the content file
selected from browse
option.

 37

Options:

Figure 7: Options Panel

Acknowledgements: We thank Manjunath Reddy and Srinivasan Iyer for
their contributions to the project; in particular for the user interface
implementation and Oracle expertise.

Number of rules to find.

Sort examples by different metrics:
confidence (0) the default, Lift (1), Leverage
(2), Conviction (3)

Specify minimum confidence of a rule

Reduces support until min support is reached.

Specify upper bound for minimum support

Specify lower bound for minimum support

 38

Report #3

Design and Simulation of Agent-based Trust Management Techniques

for a Coalition Environment
Srinivasan Iyer and Bhavani Thuraisingham

The University of Texas at Dallas

Published as Technical Report UTD-CS-45-06

Abstract

Effective communication among agents in large teams is crucial because the members share a

common goal but only have partial views of the environment. Information sharing is difficult in a

large team because, a team member may have a piece of valuable information but not know who

needs the information, since it is infeasible to know what each other agent is doing. Information

sharing is a main part of any system or organization. Even in the times of kings and Empires,

Information sharing was unavoidable. There were many alliances between the Kingdoms,

Espionages, miscommunications, treachery, deception, compromises, Victories and Defeats. The

information sharing needs to be foolproof. Only the legitimate receiver should be able to get hold

of the information. Even Kings had their own way of secured Information sharing. They had the

royal seals to verify if the information is authentic. This paper mainly deals with intelligent

software agents for information sharing with confidentiality and trust. It clearly defines an

Intelligent Software Agent, background of Information sharing in intelligent agents and the trust

in the agents. Some part of the information needs confidentiality. The information that is shared

requires security policy enforced based on the level of confidentiality and trust level of individual

agent.

1. Introduction

Exciting emerging applications require hundreds or thousands of agents and robots to coordinate

to achieve their joint goals. In domains such as military operations, space or disaster response,

coordination among large numbers of agents promises to revolutionize the effectiveness of our

ability to achieve complex goals. Such domains are characterized by widely distributed entities

with limited communication channels among them and no agent having a complete view of the

environment. Information relevant to team goals will become available to team members in a

spontaneous, unpredictable and, most importantly, distributed way. The question addressed in this

paper is when a team member senses some information, how it can decide which team member to

 39

communicate that information to. In most applications for very large teams, broadcasting

information is not suitable, desirable or feasible. Instead, the agent must attempt to target its

information delivery to just the agents that need it. In a large team, each member has a limited

model of what other members of the group know or even what many of them are doing. For

example, a field agents involved in a military operation may observe many features of a

battlefield on route to an assignment. Many of its observations will be relevant to the plans of

other combatants but the field agents will not necessarily know which group members require the

information.

 This paper presents a system to sharing information that is applicable to large teams [1]. A key to

the solution is imposing a static network topology on the members of the team where each agent

requiring communication to be only along very few links in that network. The key observation

underlying this solution is that each piece of information is interrelated and the sender of a piece

of information can “guess" who might need some information based on previously sent messages.

Thus, when an agent has a piece of information, it can determine which of its neighbors in the

network is most likely to either need the information or know who does, based on related

messages previously received. Secondly, investigate the influence of different types of team

network topology on the efficiency of information sharing.

Trust negotiation is a very important part of any system or an organization. Without trust no

transaction can be successful. If there are many systems interacting between them each one has to

have trust with other in order to share data, alliances and deals to save the operation cost which is

major part of any project. The negotiation is always conflicting since it is to compromise between

two agents in order to achieve decision for conflicting distributed systems. The negotiation is

taken based on the environment with two decisions to support self interest or the entire system.

The decision tree is then formed based on the negotiation and the scenario is stored into the

library incase if it is newly proposed. So that it can be used in the future without much of

computation.

The Confidentiality of Information is a major threat in a system that is used to share information.

Incase the confidential information is disclosed to an agent that is not entitled to that level of

security, there is a chance of losing the vital information to an untrustworthy agent. If the trust

level of the agent does not match with the security level of the information then the information is

secured. The security policy of the information is distinguished into four types as unclassified,

classified, secret and top secret.

 40

2. Preliminaries

2.1 Definitions:

Agent: An agent defines a person or an organization that interacts with other person or

organization on behalf of the owner.

Software Agent: It is not as simple as a real world agent. There are various definitions for a

software agent. The closest definition would be the following “A software agent is a software

with some inbuilt functionalities that interacts with other software agents and perform the

allocated task based on the rules that govern them.”

Intelligent Software Agent: It is a hybrid version of a software agent with some intelligence of its

own. “[An Intelligent Software agent is] a piece of software that performs a given task using

information gleaned from its environment to act in a suitable manner so as to complete the task

successfully. The software should be able to adapt itself based on changes occurring in its

environment, so that a change in circumstances will still yield the intended result.” (Herman’s

1997)

2.2 Functions:

Intelligent software agents should perform the following tasks continuously

1. Insight of changing environment

2. Action required for the change

3. Reason to the action taken

4. Solution for the problem

5. Draw Inferences and perform decision tree for future use.

3. Background and related work

Information sharing and Trust negotiation in intelligent agents have there root way behind from

90’s. There are various researches going on Information sharing in Intelligent Software Agents

lab of Carnegie Mellon (the Robotic Institute). One of such is Information sharing in Agents.

They have alternative decision making systems and Bilateral Negotiations with outside options.

In this paper for knowing the background of trust negotiation, will discuss some of the points

from the bilateral negotiation with outside options.

The bilateral negotiations paper considers each trust negotiation as a thread. The model is

composed of three modules: single-threaded negotiations synchronized multi-threaded

negotiations, and dynamic multi-threaded negotiations. The single-threaded negotiation model

 41

provides negotiation strategies without specifically considering outside options. The model of

synchronized multi-threaded negotiations builds on the single-threaded negotiation model and

considers the presence of concurrently existing outside options. The model of dynamic multi-

threaded negotiations expands the synchronized multithreaded model by considering the

uncertain outside options that may come dynamically in the future.

Most related work can be classified into one of several major categories. The first strand of

research is based on a centralized model or distributed model where there are agents such as

match maker, information broker or message broad who can response for all information

communication [2,3]. These works has been shown to be able to greatly improve multiagent [4]

system performance [5]. However, such work is inadequate for large team, since it is impossible

or undesirable for all team members to share all their information all the time, i.e. because of the

limit of required communication channels. The second major strand of research is relies on agents

maintaining a shared model of each other or knowing exactly other members' actual internal state

as STEAM[6], COM-MTDP [7] and CAST [8]'s mental model. However, as for centralized

approaches, in large team there is insufficient bandwidth to support such an approach.

The information sharing problem can also be handled by setting up decentralized model. Both [9]

and [10] did a communication decision model based on Markov decision processes (MDP). Their

basic idea is an explicit communication action will incur a cost and they supposed the global

reward function of the agent team and the communication cost and reward are known. Moreover,

[11] put forward a decentralized collaborative multiagent communication model and mechanism

design based on MDP which assumed that agents are full-synchronized when they start operating,

but no specific optimal algorithm was presented. Unfortunately, there are no experimental results

showing that their algorithm can work on large teams. Incomplete information theory is another

way to solve the information sharing problems. [12] Presents a framework for team coordination

under incomplete information based on the incomplete information game theory that agents can

learn and share their estimates with each other. [13] Used a probability method to coordinate

agent team without explicit communication by observing teammates' action and coordinating

their activities via individual and group plan inference. Research on social networks began in

physics [14, 15, 16], but since it has been applied in many areas though rarely in multiagent work.

4. System Architecture

The system model for information sharing among large teams can perform distributed

information sharing without the cost of maintaining accurate models of all the teammates. First,

impose a network topology on the team members analogous to the social networks that exist in

 42

human societies. The key characteristic of this network model is that information exchange is

based on peer to peer communication. Specifically limit agents to communicating directly with

only a small percentage of the overall team.

Figure1: System Model for agent information sharing with confidentiality and trust

negotiation

Leveraging the team network, our basic approach like Figure1 is when an agent has a piece of

information to communicate, it forwards that information to the direct acquaintance most likely to

actually need that information or know who will. Then the acquaintance performs the same

reasoning when it gets the information. After passing through hopefully, a small number of team

members, information arrive at a team member that needs it. The intuition is that each agent

attempts to guess which of its acquaintance either require the information or are in the best

position to get the information to the agent that requires it. Even though members of large teams

will not have accurate, up-to-date models of the team, our hypothesis is that the models will be

accurate enough to deliver the information in a small number of “hops”.

 43

One agent is randomly chosen as the source of some information and another is randomly chosen

as the sink for that information. A probability is attached to each link, indicating the chance that

passing information down that link will get the information through the smallest number of links

to the sink. The probability will increase as it reaches closer to the target. The chance of missing

the target depends on the distance between the source and the sink. The number of “hops” to vary

as the distance varies.

The challenge is to construct complex models for information sharing but only have reasonable

models to improve agent's guessing. The key question is how to create models that allow the

agent to “guess” correctly more often than not. To achieve this, we observe that each piece of

domain knowledge is typically related to each other piece of domain information. For example, if

agent ‘a’ tells agent b about a plan to destroy an enemy base, when agent b gets the information

that the base is fake, sending that information to agent a is a reasonable thing to do, since a likely

either needs the information or knows who does. So it is reasonable to infer from an agent's

formerly sent message that it may need the other kind of information to improve the performance

as the above example. Thus, the previously received information can be interpreted as evidence to

infer which acquaintance to send other information to. If an agent maintains a knowledge base

about what it heard from its acquaintances, it can use that knowledge to determine where to route

newly received information. The other challenge in the network is trust management. Consider

the previous example. In case if agent a is not trustworthy then that information to destroy the

enemy base might be fake. So trust negotiation is an important goal. In our system we can

negotiate trust based on their acquaintance. For instance the source is acquainted with another

agent in the network that is acquainted with the sink; the sink can get the trust level from its

acquaintance. In the beginning the complex network will be formed with no acquaintances. Then

once the connection is setup and each agent begin to acknowledge each other’s neighbors then the

trust levels are assigned to the agent based on their information. If there is a bad agent then it

tends to spoil the entire system. The other agent sends the bad acquaintance that they have had

with the corresponding agent.

In the system simulation there is also a security policy implementation that has a very important

part in the sharing of the information to authorized agents rather than transferring the secret level

data to lower access agents. The token and the information are linked with a security level. Each

agent maintains its own level of confidentiality for any particular information. There may be

instances where the same information with different clearance level can be stored in different

agents. This also makes a possibility that if one agent rejects the request based on the trust level

of the requesting agent, another agent can service the request based on the trust level or

 44

acquaintance level that it has maintained with for that corresponding agent. The following

example can explain the point. Agent ‘a’ can have two or more acquaintances in this case it is

two ‘b’ and ‘c’. The trust level of ‘a’ with ‘b’ is in higher clearance level say secret level and with

‘c’ it is in classified level. If there is a request from ‘a’ sent for some information at secret level

then ‘c’ will reject the request and ‘b’ will service the request. Similarly ‘b’ and ‘c’ have two

different levels for the same information i.e. information ‘x’ level secret in ‘c’ and level classified

in ‘b’. If ‘a’ request for the same information then there is a chance that ‘b’ will service the

request.

5. Implementation of the system

5.1 Overview

The simulation of the intelligent agents sharing information is done using Java programming. The

program mainly concentrates on two things. How much message is being transferred from each

agent and the trust element within each agent? The summary of the simulation mainly has results

on how much message each agent had in the beginning of the session? How much they shared

with the other agents in the simulation and how much they received from the simulation.

The important feature of the simulation is that it also holds the history of the summary which

makes easy to know the amount of data lost in each session. The agents can make use of the

history of the summary to learn more about the other agents in the simulation and try to avoid the

more data loss in the future session with the same set of agents. This also helps in knowing the

nature of the agents involved, if they are ready to participate and send more messages or they are

just waiting to get the most out of the other agents. Such agents are also blocked from the

simulation by not sending messages to that particular link. This depends on the individual

discretion of the agents. They also pass on the information to other agents in the simulation that

such a neighbor is not willing to send any information and readily accepts all the information that

is passed on to it or through it. Those dormant agents are like leeches that spoil the entire

network. The algorithm is explained clearly in the next section of Implementation.

5.2 Algorithm for Information sharing with Confidentiality and Trustworthy Computing:

In this algorithm as in Figure 2, at the time of forming the coalition, the agents have the

information about the direct acquaintances i.e. a neighbor and their trust level. If there is going to

be a new neighbor the trust level is set to a minimum acquaintance level. Then each agent has its

own set of information to be shared with other agents in the network. The information is linked

with a significant token number and a security Policy. The moment a message is requested by

some agent for some information, the token is received then the security policy of the

 45

corresponding information is matched with the clearance level of the requesting agent. The

clearance level mainly depends on the trust level of the requesting agent that is linked with the

source agent. In this algorithm there are four such clearance levels. U Unclassified,

C Classified, S Secret and T Top Secret. The trust levels are similarly split into four levels

where in the minimum threshold is set for unclassified information. Each agent can read below or

at their level.

Figure 2: Flow diagram of the Information sharing with confidentiality and trust

management.

There may be multiple copies of the information existing simultaneously in the network along

with the same token number, yet the token and information pair is always unique. If the agent

gets the same information with two different tokens or vice versa, then his discrepancy will lead

to loss of trust. It will perform a multiplicative decrease in the trust level. Similarly if new

information arrives trust level of the acquaintance is increased. There is a minimum and

maximum threshold level for trust. If any acquaintance falls below the minimum threshold of the

trust, then they are removed from the circle of trust, further communication is stopped and the rest

of the acquaintances are notified about the bad agent. If the acquaintance’s trust level goes above

the maximum threshold then the agent sends all the messages requested by the acquaintance. The

information sharing goes on until one agent gets the entire information it needs or to a fixed

number of time where all the agents have the list of data lost and data gained. It also stores the

 46

history of the direct acquaintance and its trust level which helps in future coalition with the same

agent.

5.3 Specification of the algorithm

1. Form Communication link with other agents where the neighbors are the acquaintances.

2. If new neighbor set minimal trust level else load the existing trust level from the database.

3. If an agent request for some information. Check the trust level of the agent and the access or

security level linked with the information

4. If the access is granted allow service the request based on priority. Else reject request.

5. Start sending and receiving messages (the tokens and the Information are linked).

6. If there is mismatch in messages multiplicative decrease of trust and if the trust goes below

minimal trust after decreasing block agent and notify the network

7. If there is message (new or old with match) additive increase trust and also if the trust is above

max threshold send the entire request one by one.

8. If any one agent has all information or end of session occurs end link store trust level, Message

(Token and Information).

9. Calculate the amount of data lost or gained from each acquaintance

6. Experimental results

The simulation of the algorithm was implemented and there were many sets of results generated.

The experimental results were very much helpful in understanding how the system works. In

chart 1 the Information that was sent from each agent and the information gathered at each end is

collected and the Net Gain is also calculated.

Information Gained or Lost

-40
-35
-30
-25
-20
-15
-10
-5
0

1 2 3 4 5 6 7 8

Agent ID

N
et

 G
ai

n/
Lo

ss Session1
session2
Session3
Session4

Chart 1: X axis agents and Y axis Net Gain/Loss

 47

Let T Net Gain/Loss of Information for any agent.

R The message received from Agents by some agent ai.

S The message sent to other Agents (a0, a1…… an) by agent ai.

O The own message of each agent in the beginning of the session.

T = (R-(S+O))

Chart 1: The above chart mainly describes about the net gain of information by each agent in four

continuous sessions of information sharing with trust computing.

The Chart 1 has four set of simulations that was done within 8 agents. The simulation revealed

that as the session increases the gain also increases. This is because the agents come to know well

about the other agents. Agents have the trust level of each agent in their database summary. The

trust level increases the gain increases. Since most of the agents send 90% non negative messages

the gain increases for each session. The chart1 also clearly shows that there is not a much of

difference in gain of all the agents. They all share same level of trust in the beginning and the

gain varies based on their trust level through the simulation. If they send one negative message

their gain goes down. The neighbors stop sending messages if they are notified that some agent is

below the threshold level of some other acquaintance. So the gain in sharing depends mainly on

the trust level. The chart has net gain and loss on its Y axis. The series one to four indicate the

simulation that was conducted on the eight agents in continuous session of information sharing.

The chart clearly indicates the increase in gain as the session progresses. The summary of the

experimental results contain the amount of message sent, received and the Net. It also has the

recent trust level of all the neighbors. The newly received tokens are also copied in the summary.

7. Summary and Future Directions

The proposed algorithm has been implemented. The experimental results show that the

information sharing is done as in peer to peer communication network. The amount of

information lost and gained is stored at the end in the database. The number of messages sent to

share a little amount of information through the network is high. The scalability also becomes an

issue. If there are more neighbors the amount of message sent and managing the traffic of

messages becomes a very big issue. The future work on this research can be implementation of

the above system in which the guess and hops are calculated to the efficient way to share

information among the agents.

A major issue we leave for future research is how to calculate the relationships between pieces of

information which is highly relative with domain knowledge and expertise where our algorithm

 48

should be applied. Furthermore, we do not investigate how information sharing works on

negative relative messages where the relationship between pieces of information. Does the

dormant agent gain more than the other active agents? Can the agents form a multicasting group

which might help in communicating with a group of agents simultaneously? The multicasting

group will save a lot of network resources by sending one message to a gateway agent and

thereby pass it to the whole multicast group.

References

[1] P. Scerri, Y. Xu, E. Liao, J. Lai, M. Lewis, K. Sycara. Coordinating very large groups of wide

area search munitions, Recent Developments in Cooperative Control and Optimization,

Dordrecht, NL: Kluwer Academic Publishers.

[2] M. H. Burstein and D. E. Diller. A framework for dynamic informationflow in mixed-initiative

human/agent organizations. Applied Intelligence on Agents and Process Management, 2004.

Forthcoming.

[3] K. Decker, K. Sycara, A. Pannu and M. Williamson.Designing behaviors for information

agents. Procs. Of the First International Conference on Autonomous Agents, Feb., 1997.

[4] P. R. Cohen, H. J. Levesque and I. Smith. On team formation.In J. Hintikka and R. Tuomela,

editors, Contemporary Action Theory, Synthese,1998

 [5] K. C. Jim and C.L. Giles. How communication can improve the performance of multi-agent

systems. In Proceedings of Autonomous agents'01, 584-591, 2001.

[6] P. Scerri, Y. Xu, E. Liao, J. Lai, K. Sycara. Scaling Teamwork to Very Large Teams, AAMAS

04, Forthcoming, 2004.

[7] D. Pynadath and M. Tambe. The communicative multiagent team decision problem:

analyzing teamwork theories and models. Journal of Artificial Intelligence Research, Vol.16,

pages 389-423, 2002.

[8] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu and R. A. Volz. Cast: Collaborative agents

for simulating teamwork. In Proceedings of IJCAI'01, pages 1135-1142, 2001.

[9] P. Xuan, V. Lesser and S. Zilberstein. Communication decisions in multiagent cooperation:

Model and experiments. In Proceedings of Autonomous Agents'01, 2001. [10] C.V. Goldman and

S. Zilberstein. Optimizing information exchange in cooperative multi-agent systems. Proceedings

of the Second International Conference on Autonomous Agents and Multi-agent Systems, 2003.

[11] C.V. Goldman and S. Zilberstein. Mechanism design for communication in cooperative

systems. Game Theoretic and Decision Theoretic Agents Workshop at AAMAS' 03, July, 2003.

 49

[12] H.H. Bui, S. Venkatesh and D. Kieronska. A framework for coordination and learning

among team members. In Proceedings of the Third Australian Workshop on Distributed AI (DAI-

97), pages 116-126, Perth, Australia.

 [13] M.V. Wie. A probabilistic method for team plan formation without communication.

Proceedings of the Fourth International Conference on Autonomous Agents, pages 112-113,

Barcelona, Spain, June 3-7, 2000.

[14] R. Albert and A. Barabasi. Statistical mechanics of complex networks. Review Modern

Physics, 74, 47,2002.

[15] M. E. J. Newman. The structure and function of complex networks. SIAM Review, Vol. 45,

No. 2, pages 167-256, 2003.

[16] D. Watts and S. Strogatz. Collective dynamics of small world networks. Nature, 393:440-

442, 1998.

 50

Report #4

Research and simulation of game theoretical techniques for data
sharing among semi-trustworthy partners

Ryan Layfield, Murat Kantarcioglu, and Bhavani Thuraisingham
Department of Computer Science, The University of Texas at Dallas
{layfield, muratk, bxt043000@utdallas.edu}

Published as Technical Report UTD-CS-46-06

Abstract

Our objective within our work has been to consider the interaction of participants within a loose
coalition. In particular, we are interested in a scenario in which those involved have made a
reluctant but necessary decision to trade information to achieve some goal. A great deal of work
has already been done in the areas of secret sharing and protocol enforcement. However, even if
agreements to exchange are kept, there is no guarantee what is shared is legitimate. The ultimate
goal of this research is to create a behavior which works optimally against lying agencies while
taking advantage of implicit trust. Our results at this point in the research suggest our algorithm
is effective against basic opponents, though more refinement is needed. We discuss which
behaviors worked for the players and why, with regards to the motivating factors for each
strategy. Essentially we are using game theory to enforce honesty within a competitive coalition.

1. Introduction

A coalition consists of a set of organizations, which may be agencies, universities and
corporations that work together in a peer-to-peer environment to solve problems such as
intelligence and military operations as well as healthcare operations. Figure 1 illustrates an
example coalition where three agencies have to share data and information. Members of a
coalition, which are also called its partners, may be trustworthy, partially trustworthy or
untrustworthy. Furthermore, coalitions may be dynamic in nature. That is, members may join and
leave the coalitions in accordance with the policies and procedures.

Data from the various data sources at multiple security levels as well as from different
services and agencies including the Air Force, Navy, Army, Local, State and Federal agencies
belonging to coalitions have to be integrated so that the data can be mined, patterns and
information extracted, relationships identified, and decisions made. The databases would include
for example, military databases that contain information about military strategies, intelligence
databases that contain information about potential terrorists and their patterns of attack, and
medical databases that contain information about infectious diseases and stock piles. The
agencies have to share information as much data as possible but at the same time maintain the
security and integrity requirements. This concept has come to be called Assured Information
Sharing. .

We have been examining policies and procedures for assured information sharing in a
coalition where partners may be trustworthy, untrustworthy or partially trustworthy. In the case of
trustworthy information sharing we conducted experiments to determine the amount of
information lots by enforcing policies. In the case of untrustworthy information sharing we have
examined approaches for both defensive and offensive operations. In the case of partially

 51

trustworthy data sharing, we have examined game theoretic approaches so that the members of a
coalition can extract information for their partners.

This paper describes our research on information sharing between partially trustworthy
partners. It essentially considers interactions between participants within a loose coalition. In
particular we apply game theoretic approaches for allowing players to determine when and who
may lie to them. The organization of this paper is as follows. Section 2 gives motivation for our
research. Related work is discussed in section 3.

This paper is broken up into 9 sections. Sections 1 and 2 setup the nature of the research
and the real world motivation we have for it. Section 3 outlines related areas of work in game
theory. Section 4 outlines the constraints placed by the assumptions we’ve made during the
research, detailing the reasoning behind each choice. Section 5 outlines the mathematical and
game theoretical principles within our model, while section 6 details how we plan to use these
factors in our experiments. Section 7 gives the highlights of our results, providing as much data
as time and space will allow. We conclude with section 8, showing our observations from
experimentation, and section 9 cites our sources.

2. Background

Our motivating example can be found in the nature of international coalitions. Consider a set of
countries which are interested in their own national security. At some point in the future, an
attack will be carried out by a militant or criminal organization which will have far-reaching
impact on the intended victim. The exact details of the situation are unknown, but each of these
nations suspects that they may be the target.
 Each nation has an agency which is responsible for dealing with such affairs and has the
capability of stopping the attack once enough detail is known. At the initial discovery of the
event, each agency has utilized their available resources and connections in an attempt to
ascertain where and how the attack will take place. Regrettably, no single agency has been able
to gather more than a fraction of the complete intelligence necessary, and their results have turned
up no further leads on which to act.
 As a specific example, consider recent events. This particular attack will be carried out by
some unspecified group using what the agencies suspect is some kind of high-yield destructive
device. The nature of the threat requires that each agency consider the lives of countless
civilians, a considerable motivation.
 The looming time table for the attack, a lack of further available data, and high stakes
suggest that any single agency cannot complete the information alone. Understandably, all
agencies would like the option of completing their investigation of the attack on their own.
Involving an outside party raises the possibility of compromising national security.
 In the face of such adversity, a number of agencies believing they are the target have
decided to enter into a coalition. The framework for such an arrangement could be in place based
on alliances, membership in worldwide organizations, or simply through political negotiation.
Regardless of how it is formed, such an alliance provides the framework on which our research is
based.
 Due to political distrust among the countries involved, sharing information openly has no
guarantee of gaining more data about the event. Therefore, cooperation in this situation is best
achieved in a trade-based system. Consider the total data collection as a series of fragments.
Assuming a protocol is agreed upon for making trades secure and no agency has incentive to
deviate, it becomes possible for each agency to exchange pieces until enough information has
been gathered to ascertain the nature of the attack. In ideal circumstances, all agencies would be
inclined to trade data feely until the puzzle was complete and all could share the results.
 However, the reality of politics dictates that it would benefit an agency to be the first to
complete the puzzle. Doing so could potentially earn more funding for the agency from their

 52

home country as praise for their work, or it could simply be a matter of beating others to it for
leverage. Whatever the case may be, although protocols may be followed, it is within each
agency’s own interest to complete the puzzle first and ensure their opponents did not make the
same progress.
 The protocol in place only dictates how information is traded. It does not make any
guarantee as to the legitimacy of what is being traded. As such, an agency can choose to fabricate
information and offer it as if it were legitimate. Fabricating information is a relatively simple
task; as long as it does not appear to be inconsistent with related information, an agency which
chooses to exchange this false data will gain more from the trade than their opponent. This
essentially permits an agency which wants to ensure certain opponents do not succeed to perform
a ‘legal’ form of sabotage.
 Since there is no guarantee that traded information is legitimate, an agency has three
options following the trade. First, it can choose to accept the information as completely
trustworthy, integrating it into their own collection immediately upon receipt. This is the easiest
method available, and it is a viable option as long as their trade partner has proven trustworthy in
the past.
 For partners that are less trustworthy, the next option is to verify by asking another player
to compare it with its own data. The result of such a query simply determines whether data
matches the other participating agent’s own holdings. The value of such a query is big, as it
requires little work on either agency’s part and it can yield relatively inexpensive results as long
as participants are honest. The complete value of such a choice is based entirely on the holdings
of the queried partner; there remains a risk that further analysis will be necessary.
 The final option is internally verifying the data. By using the agency’s own internal
resources, it is possible to determine with complete accuracy whether or not the data is a fake.
This is obviously a costly choice, as it requires a substantial devotion of time and manpower, but
it does offer the guarantee that no further analysis will be required. It also has the benefit of not
leaking the status of the agency to their competitors.
 In simulations, it is easy to regard the situation as if all participants viewed each other
equally. This greatly simplifies models and provides level footing for measuring interaction.
 Nevertheless, to adequately model the international environment, one must consider the history
of the countries which each agency represents.

The relationship between any two countries is determined by what is frequently a
complicated history of cooperation, distrust, victory, and defeat within a number of arenas. This
relationship may be misinterpreted by both sides; country A may view country B as a long-time
ally while recent discoveries by country B lead it to regard country A as a bitter enemy.
Perception depends also on the context of the situation and the private motivations each country
has to discover the information.

The end result of this scenario is the clear need for a model that can adequately account
for each agency’s view of its opponents and maximize the use of available information to make
cost-effective decisions to ultimately complete the information puzzle. While this may seem as
an ambitious task, a proper blend of game theory modeling and reasonable assumptions can yield
a simulation in which we can model the complex interactions among them. Ultimately, we will
be able to draw conclusions on how strategies can be changed and why certain agencies ‘win’ in
these scenarios.

3. Related Work

Game theory has long been a staple of analysis within social and political sciences.
Repeated games themselves represent a persistent and realistic view of how people interact.
Robert Axelrod in his book “The Evolution of Cooperation” explores the findings of a contest he
created using a variation of the Prisoner’s Dilemma. In it, all participants were encouraged to

 53

submit their own algorithms in an attempt to find the superior approach. Surprisingly, the winner
of the contest was a retaliatory algorithm known as Tit-for-Tat, which essentially cooperated with
another player unless there was a change of strategy, in which it simply mimicked its opponent.
[1]

Several related areas of work have already considered the possibilities of game theory as
applied to information sharing. In particular, a great deal of work has been done on peer-to-peer
networks. Within these file sharing systems, independent players join and leave at their leisure,
seeking to download a file or files with the help of other participants. Problems arise when a new
participant joins the network and download a resource from other peers and never actually
contribute to the group. This process, known as leeching, has been a large problem in piece-meal
file sharing protocols such as the popular BitTorrent. The work of Gupta et. al [4] and Buragohain
et. al. [2] both deal with this behavior by creating a system of incentives for further contribution.

4. Assumptions

4.1 Initial Assumptions

We make the assertion that all agencies begin with the same amount of ‘pieces’ of data. It is
assumed that each piece has an equal value, thus ensuring every simulated agency begins with a
fair amount of available pieces to trade. This is somewhat unrealistic, as many countries are
reputedly much more effective at gathering information than others. However, a level playing
field is essential to understanding how strategies are chosen, and an unequal distribution would
favor the agent with more data than the rest.
 We also assume that information never changes in its value as the game progresses. This
is to simplify the model, as current research suggests modeling an economy without a centralized
agency is currently far more difficult and has yet to be adequately explored. It is important to
note that, in real scenarios, information availability makes some data much more valuable than
others (i.e. the names of the attackers vs. whom they represent).

The next major assumption made is that each country has some predetermined amount of
bias toward other countries. This is varied between sets of experiments, and it is obvious that
some countries will have higher collective favor due to higher ratings than others. Every agency
has some opinion of the other players, but none of these players have a way of knowing what that
opinion is. Such data can only be determined through observation of interactions.
 The cost associated with all data acceptance methods is consistent among all agencies.
That is, the alternatives to simply accepting a piece each are assumed to have the same impact on
local resources for each agency. Again, in real life, each agency will have some level of
efficiency for multiple approaches, but for purposes of focusing on strategy, this cost will be
consistent. Note this also implies each agency essentially has the same amount of strength
regardless of the country they represent.

4.2 Interaction

Communication is an essential part of trade-based interactions. To reflect the modern
technologies of privacy and encryption techniques, we assume that there exists a secure
bidirectional information pipe between every agency over which messages can be sent. The pipe
is reliable, always connected, and completely secure from any sort of outside interference or
observation. This includes determining the type, content, and nature of messages, as well as
when messages are being passed. In essence, no participant in the game can use information
gathered from surveying or observing their opponents’ interactions.
 Given that this pipe is between all possible pairs of agencies, and that the pipe is always
present, we also assume that no agency will be isolated from potential interaction. An agency
must consider all other participants with the same criteria. Alliances between agencies to ‘shut-

 54

out’ an opponent are not permitted in any form or fashion. This does not prohibit the sharing of
information regarding reliability.
 Another level of abstraction within this form of interaction is that no agency can directly
observe any other agency’s activities. While communication itself is protected, this stipulation
includes learning what another agency is planning to do next, what information it currently has,
and how close it is to gathering all of it. Data of this nature can still be derived by determining
how they want to trade and cooperating with other participants to discover this information. How
this is done will be discussed later.
 When using the external verification method, we assume that all agents are completely
honest in this protocol. The response from such a query cannot be fabricated. Additionally, any
information shared in a query will always be with another agent whom through unspecified
means has confirmed they indeed also have a piece. Regardless of what is shared, no agent may
derive assumptions about other agents within this protocol, including the presence or absence of
pieces within other agencies.

The issue of deviation from protocol is an important consideration that has already been
briefly mentioned. This becomes a significant assumption in keeping the cooperation among
agents viable, as the real life equivalent of backing out of a deal can both drastically upset the
political environment and eliminate further legitimacy of established protocols. In some
instances, it may even destroy the coalition itself. Exchanging false data is actually less risky by
comparison, as there remains the possibility that the transmitter of the information simply picked
it up from a previous trade believing it was legitimate.

One of the biggest issues in creating a workable simulation is avoiding the complications
of an asynchronous environment. As indicated in the work of [9], while treating the agencies as a
series of independent systems is a much more realistic interaction model, it opens up a new
dimension of possible variables including the speed at which each agency operates at, how
conflicting perceptions of time are handled, and issues of fairness. The accommodation of just a
few of these factors would require the implementation of multiple potentially costly protocols
within the model, all of which are beyond the concern of this research. Therefore, we assume that
interactions happen in rounds, where each agency is interacting and trading simultaneously.
There is a limit of one initiation of trade per agency per round, though one agency can be a part of
multiple trades initiated with them.

4.3 Winning

 We assume that once an agent believes it has acquired all pieces of information necessary
to act that there exists some external action which can determine its success. Clearly, in reality,
this would require an extraordinary commitment of resources to begin acting on the information
to insure the event did not transpire. We therefore assume that when an agency decides to act that
it can only do so once.
 The resources available to each agency are assumed to be sufficient for the duration of the
game regardless of strategy. They are consumed based on the verification strategy chosen at each
round, and represent the investment of time and resources to accommodate the choice. However,
in the interest of being efficient and recognizing the resources are indeed limited in real-life
scenarios, each agency is motivated to minimize overall use.
 The nature of ‘winning’ requires the number of pieces held by an agent to exceed some
threshold of correctness. This threshold represents the allowance for error which occurs during
any investigation, under the assumption that a fraction of errors are correctable through correlated
data and associated information. Such a requirement also avoids situations in which two
agencies, suspecting the other is on the verge of winning, refuses to tell the truth on a piece
exchange necessary for either to win. [5]

 55

 The most important aspect of trying to win this game is that trust generated among agents
will be carried into future relations countries which the agencies represent. For example should
agency A choose to lie frequently to agency B in order to win the game, whether or not A
succeeds, future relations between A and B will be severely degraded. In the event that A needs
help from B, B will be much less likely to deal honestly in return. We thus assume that agency
wants to also avoid losing considerable amounts of their reputation.

5. Modeling

The foundations for our proposed model begin with basic game theory. According to [7],
game theory is best described as the study of mathematical models of conflict and cooperation
between intelligent rational decision-makers. Essentially, we consider each agency as a player
within a game whose goal is to gather all information that was initially distributed.

The lack of certainty regarding an opponent’s actions and motivations rules out the use of
traditional strategic modeling. Instead, we make use of Bayesian Modeling. According to the
formal definition from [9], we consider a game as set of players N and a finite set of possible
states Ω that any given player can be in. A state here is simply how the player views their
opponents and what pieces have been collected up to this point.

In addition, there are a number of variables in this model that warrant player-specific
information tracking. There is a set of actions Ai that each player can take with regards to their
current state. Since they do not have complete information, they rely on a set of signals Ti that
are observed with regards to the other participants, which is transformed by a signal function τi:
Ω Ti. This permits each player to interpret the data they perceive independently and draw from
previous internal history. For each state we believe our opponents may have been in out of Ω, we
assign a probability pi that dictates our prior belief of other players’ choices as indicated by a
signal. Each interpreted signal is guaranteed to always have some probability, according
to for all ti ∈ Ti. This is implicitly a part of how we calculate previous strategies.
Regardless of how we view it, our theory must ultimately be rooted in Bayesian games. [6]

This scenario is in essence a repeated game. That is, our signals in Ti are a function of a
history of actions H, which is defined as , where A0 represents the initial history [9].
Over the course of the game, the history of the game is built by choices made by each participant
as they interact with others. Previous interactions are private and viewed and evaluated by each
agency. The implicit signal function yields the probability of fake pieces being handed out given
prior analysis.

As part of the game, we consider the objective the specific acquisition of pieces of
information to complete the original ‘puzzle’. How the puzzle itself is generated is irrelevant; we
simply need a series of uniquely identifiable pieces. The operations on these pieces include
making a real copy and creating a fake copy.

In strategic form, the basic representation of strategies in our game between two trade
partners that can choose to lie to each other is depicted in Table 1.

P2
P1

Tell Truth

Lie

Tell Truth A
A

B
A – L

Lie A - L
B

B - L
B – L

Table 1. Basic strategic representation.

 56

where A represents payoff if the other player tells the truth, B represents potential gain if the
player lies, and L represents the loss experienced by either player if they are lied to. This initial
configuration is derived from the work of [7], and it gives a good starting point in terms of how
the system could be modeled at it’s most basic level. However, this is insufficient for our
particular scenario.

There are essentially two types of players for each individual game between any two
players: those that lie, and those that do not. Thus, {truth,lie} is the possible universe of
strategies Ω. Which strategy an agency chooses varies from trade to trade, which implies a mixed
strategy approach that we must accommodate for. For simplicity in our equations, pi

j(…)
represents the perception i has of j regarding some probability of an action or attribute. The result
of pi

j(fake) is the perceived probability that player j will be lying to player i. Equation (1)
represents this modified utility return for each possible choice of strategy for player 1. The
probability pi

j(verify) represents the chance that player j will choose to verify the piece from
player i, and M represents the loss of favor player i will incur in player j’s perception.

 (1)

This equation brings us closer to accommodating both agencies’ motivations with regards to risk
and consequence. However, it does not accommodate the fact that pieces must be chosen based
on when and how we verify.

Pj

Pi
Tell Truth

Lie

Tell
Truth

Lie

Table 2. Refined Strategy with additive Opinion Weighting

Consider the value of V as a numerical representation of resource costs for verification.
As stated before, there are three possible actions for receiving a piece: {accept, external_verify,
internal_verify}. We assign a cost determined by function c(…) to each such that 0 ≤ c(accept) <
c(external_verify) < c(internal_verify). The choice of each based on cost alone would yield an
equilibrium of always accepting, but based on choices by other players, this strategy would
quickly compromise the ability to recognize players which choose to lie. The next logical step
would then be to externally verify each piece and use this as an equilibrium, but this would be a
waste of resources. The internal verification strategy yields a similar problem with a higher cost.

The investment of resources to verify a piece should be equally proportional to the
perceived need to do so. At the same time, we can never fully trust another agent, as it may use a
mixed strategy that builds up trust then lies consistently. Clearly, the equations we construct need
to reflect this. We construct the probability of verification based directly on the probability that

A raw assumption that we should verify with the same probability that we expect to
receive a fake piece would obviously drastically narrow the chance of catching it. Full trust

 57

eliminates the chance of catching anything. Therefore, we introduce the constant λ to ensure that
some minimum amount of verification occurs. Ideally, λ is equal to 0.10.

 (3)

Building on equation (3), we now must consider what method to use. Instead of using a

probability here, we instead use a threshold function based on the trustworthiness of the agent.
This threshold will be defined as a constant σ¸ which represents a general assumption held by all
agencies that there is a point at which external verification costs will exceed the value of internal
verification, due to the fact that an agency may not always lie to other agencies. In other words, if
one agency was lied to, the probability that another has been lied to is assumed to be reduced.

 (4)

(5)

 Note that external verification does not make any guarantee as the to the legitimacy of the
piece. There are four possible values that can be returned by an external query: match, no match,
verified match, and verified non-match. A match simply means the agent queried has an identical
piece, though whether or not the data is fake remains questionable. A non-match implies the
opposite unconfirmed result. A verified match means that the agent queried has a matching piece
which has already been confirmed as legitimate. A verified non-match means that the piece
submitted in the query is indeed fake.
 The cost outlined in (5) is considered the expected average cost of trading with agency j
and is applied to the strategy table found in Table 3 uniformly. The cost ultimately affects how
each particular potential trading partner is evaluated. Due to the uniformity, it is omitted from the
strategy table itself. The actual choice made once selecting an agent is determined by (4).

We consider the probability of an agent giving us a fake piece by comparing the number
of pieces verified as valid versus those verified as invalid. This yields a simple ratio of verified
good pieces over number of pieces verified from a source total. We consider Vi to be the set of all
pieces verified as either fake or real (held or not), Fi as the set of all pieces verified as fake (note
that Fi ⊆ Vi) and Ri

j as the set of pieces received during the game from agent j.

 (2)

In the event that we have not verified any pieces from agent j, we assume neutrally that they will
tell the truth 50% of the time.

 58

 For a given agency, once all strategy matrices for each player have been calculated for
potential trade partners, we must decide on whom to deal with. From each matrix, we pick the
move which yields the highest expected gain (what the agency gains sans what their opponent
gains). The most dominant strategy value is selected, and the action is carried out.

6. Experiments

The goal of our experiments is to discover equilibriums among the players within the game. This
will be done by running a number of selected scenarios, primarily to vary original trust, enough
times to determine the majority winner among indeterminate variables (i.e. whom is selected
when multiple choices are available with equal costs).
 For each set of experiments, we begin by randomizing initial trust values among all
participants. This reflects a randomly selected political environment which is independent of
previous game results yet simulates how prior interactions have affected relations. The
randomization also allows us to view whether or not having favor will yield a better strategic
result.
 Once each set has been generated, the scenario will be run 1000 times. Each iteration of
the scenario will use the initially generated trust values and run for as many rounds as the game
requires. We treat each game as a finite one due to the balance of interests in winning and
political standing, and thus assume the iteration will terminate eventually.
 During each iteration we collect a log file. This file is internally broken down by each
round of interaction and trades. All chosen actions are recorded within each round, including
whether or not a fake piece was given and subsequently discovered. Changes in trust are noted
along with the new representing value.
 The end of an iteration is noted within the log. The number of rounds taken along with
the winner of the game are recorded, and a tally of how many times each player has won so far
within the scenario is updated. In addition, tables in comma-separated value table are created
from the in-game data, including number of times transactions between any two players occurred,
and how often fake pieces were given. Most importantly, a comma-separated value table is
generated on the fly which reflects how many pieces each agency has.
 Through analysis of the tables, winners, and the strategies chosen, we hope to discover
how well our game theory holds up against other behaviors. Each experiment is designed to
present our theory with a particular challenge which we believe has merit with the real world.
We recognize the fact that the nature and benefit of a behavior is largely dependent on the other
chosen behaviors within the environment, and as such have setup three different configurations of
each proposed experiment that reflect environments with similar ratios of strategies. Each
configuration maintains a relatively equal ratio of participants.

In order to fully test our strategy calculations, we consider a number of possible opponent
behaviors. While it is impractical to test all possible combinations, we consider scenarios in
which we believe the constructed behavior outlined in this document is fully tested. These are
listed in the following sections.

6.1 Pure Random

Competitive game theory requires a player to attempt to be as unpredictable as possible.
In real life, an agency’s strategy may be entirely unpredictable; they may not have a fixed
strategy in how to interact, or they may simply not have as much of an interest in the benefits of
finding the solution. Thus, the strategy chosen is done completely randomly, regardless of
previous data.

 59

6.2 Honest Random

 Similar to pure random behavior, this particular variant focuses on sharing a real piece
more often than a fake piece. The Pareto principle of 80/20 is used to determine when an agency
chooses either strategy. This ratio was chosen based on the assumption that the principle, already
found to have a wide variety of applications from analyzing social networks to predicting wealth
distribution [10], represents a generic show of strategy. Coincidentally, this is precisely the ratio
BitTorrerent seeks to maximize. [3]
 This behavior represents a slightly refined approach to taking advantage of trust between
other agencies within the coalition and tries to lie about one out of every five times it trades.
Presumably, the other four times will be used to rebuild the reputation, while the lie may simply
be blamed by the agency on bad data from other sources should they be inquired.

6. 3 Dishonest Random

 Identical to Honest Random, but the emphasis is flipped to represent an agency which is
much more likely to give fake pieces. This is basically a counterpart strategy that inverts the
Pareto principle. This strategy represents an attempt by the agency to exploit the fact that it holds
pieces necessary to win. It is impossible to avoid eventually trading with this agency for needed
pieces.

6. 4 Benefit Random

 Using the strategy table above, this behavior uses a weighted random behavior based on
the netted value of a strategy. Although chosen randomly, an emphasis is placed on strategies
that yield more valuable results. This makes a player unpredictable while allowing them to
attempt to increase expected gains. Essentially, this forces a mixed strategy approach during the
course of the game.
 The benefit of such an approach is that it prevents other agencies from determinately
predicting their moves. In theory, this makes it an excellent challenge to a pure game theory
driven behavior, as it may ‘fool’ such an agency into believe one strategy will be used while
invoking another. Essentially, this makes it a more refined version of the pure random approach,
using the utility functions to drive where the strategy which will most likely benefit it.

6.5 Best Cost

 This is the direct implementation of the work outlined in this paper. Using the strategy
table outlined, each agency it can deal with is considered in a 1 on 1 game. A search is performed
for a Nash equilibrium [NASH05], and if one exists, that strategy is used. Which game to play is
based on the expected payoff of the dominant strategy coupled with a subtraction of the cost of
performing a deal with that agency, which is based on equation 5. Our ideal results will prove
this is the superior agency behavior.
 This behavior represents an agency which is willing to make a determinate choice based
on what it perceives as the most beneficial approach to solving the game before others do so. It
runs the risk of being predictable, but should other agencies choose to use a similar approach, the
nature of the strategy table will implicitly form an alliance within the coalition with little
incentive to deviate. Those that lie or deviate will be less likely to be considered for trading.

 60

7. Analysis of Results

7.1 Experiment 1 – Total Random vs. Best Cost

Assume that none of the agencies participating are rational, a common assumption in traditional
game theory. We introduce a rational Best Cost behavior agency which is always in the
minority. Our interest is to discover how well the agency can perform in the presence of
completely random opponents.

Agency Wins
TotalRandom_1 165
TotalRandom_2 180
TotalRandom_3 174

BestCost_1 511
Table 7.1.1. Configuration A: 4 Agent Game, 1000 Iterations

Agency Wins

TotalRandom_1 97
TotalRandom_2 95
TotalRandom_3 99
TotalRandom_4 107
TotalRandom_5 94
TotalRandom_6 93
TotalRandom_7 107

BestCost_1 114
BestCost_2 107
BestCost_3 100

Table 7.1.2. Configuration C: 10 Agent Game, 1000 Iterations (3:7)

While the Best Cost behavior excels in a smaller environment, it appears that the ratio of like-
minded agencies to totally random agencies is not beneficial. In fact, it appears the ability of an
agency to win begins to fall drastically among the larger experimental sets. Analysis of winners
within these situations reveals that they frequently start out by garnering a big lead early in the
game. This appears to carry over in subsequent rounds as a form of inertia, though this is not
necessarily a guarantee as evident in figure 7.1.1. Note that in this and future figures that the x-
axis represents the round, while the y-axis represents pieces accumulated.

Figure 7.1.1. Iteration 4, Experiment 1, Configuration C

 61

 However, the Best Cost behavior does appear to still offer a minor edge over other more
random players. Thus, in theory, such a behavior would offer a small benefit even when the
strategies or motivations of opponents remain unknown.

7.2 Experiment 2 – Dishonest Random vs. Best Cost

Unlike the previous experiment, the results here reflect well on the ability of the Best Cost
behavior to avoid interaction with those that are not beneficial to solving the problem. Since the
algorithm allows recognition of those that do not give as many fakes, the three agencies are quick
to interact with each other heavily. Thus, the only apparent reason this algorithm does not
succeed in configuration A is due to a lack of other agencies sharing similar minded behavior.
 Surprisingly, it appears that more Dishonest Random behavior agents are actually harmful
to each other to the point of rarely being able to compete with the handful of Best Cost agencies.

Agency Wins
DishonestRandom_1 286
DishonestRandom_2 315
DishonestRandom_3 288

BestCost_1 128

Table 7.2.1. 4 Agent Game, 1000 Iterations, Configuration A

Agency Wins

DishonestRandom_1 116
DishonestRandom_2 128
DishonestRandom_3 115
DishonestRandom_4 118
DishonestRandom_5 110

BestCost_1 232
BestCost_2 205

Table 7.2.2. 7 Agent Game, 1000 Iterations, Configuration B

7.3 Experiment 3 – Benefit Random vs. Best Cost

The objective of this experiment is to determine whether or not a deterministic behavior with
identical strategic priorities as that of a randomized behavior will succeed.

Agency Wins
BenefitRandom_1 20
BenefitRandom_2 13
BenefitRandom_3 17

BestCost_1 956
Table 7.3.1. 4 Agent Game, 1000 Iterations, Configuration A

In this particular experiment, the success of the Best Cost behavior is due largely to two factors.
First, all Random Benefit behavior agencies have a tendency to favor those that lie the least.
Since the Best Cost strategy matrix rarely views a lie-based strategy as equilibrium with relatively

 62

truthful agencies, the perceived deal cost for trading is substantially lower for all Best Cost
behavior agencies.

Agency Wins
BenefitRandom_1 0
BenefitRandom_2 0
BenefitRandom_3 0
BenefitRandom_4 0
BenefitRandom_5 0
BenefitRandom_6 0
BenefitRandom_7 0

BestCost_1 350
BestCost_2 326
BestCost_3 327

Table 7.3.2. 10 Agent Game, 1000 Iterations, Configuration C

 Second, it’s clear that these agencies have implicitly formed an alliance. As long as each
agency is completely truthful, another agency which has lied just once will automatically be
disqualified unless its competition is equally untruthful or it has pieces that are absolutely
unavailable from any of the completely truthful agencies. Therefore, the Best Cost behavior
agencies deal almost exclusively with each other.
 These benefits lead to an incredible momentum among the one or more Best Cost
behavior agencies. Figures 7.3.1 and 7.3.2 show exactly how much this momentum actually
increases as the number of available like-minded agencies become available. However, it’s
important to note that only one of these agencies actually surges ahead of the rest significantly.

Figure 7.3.1. Iteration 887, Experiment 1, Configuration A

Figure 7.3.2. Iteration 887, Experiment 1, Configuration C

 63

7.4 Experiment 4 – All Strategies

Perhaps the best test of any behavior is to consider a simulation in which the agencies
participating have a diverse set of behaviors and interests of their own. Amidst all behaviors
constructed and tested, it appears that the Best Cost behavior does indeed succeed at winning
more frequently by at least a 3:1 ratio in all configurations. The competition is frequently close in
each iteration, but once one of the Best Cost behavior agencies begins to gain considerable
momentum, it tends to rapidly outperform the rest towards completion.

Agency Wins

TotalRandom_1 36
TotalRandom_2 28

BenefitRandom_1 9
BenefitRandom_2 15

DishonestRandom_1 41
DishonestRandom_2 33

HonestRandom_1 32
HonestRandom_2 52

BestCost_1 374
BestCost_2 397

Table 7.4.1. 8 Agent Game, 1000 Iterations, Configuration B

8. Conclusions

Overall, it appears that the constructed behavior does perform better than other
rudimentary approaches. However, the benefit provided appears to decrease in proportion to the
number of agencies participating within the game. This phenomenon requires further
investigation as to whether this is due to the underlying assumptions about rational players within
game theory or simply a flaw within the algorithm itself.

An interesting factor that appeared within the game that was not previously considered
was momentum of piece collection. When a round favors a particular agency in terms of
successful trades of real pieces, the agency carried a leading ‘edge’ over opponents in terms of
what is necessary and what is offered. Thus, it appears that agencies will often be able to surge
ahead of the rest as long as enough pieces are in play.

However, in most of the experiments, the momentum appears to be short term at best, and
towards the end the potential offers get very specific on the last piece necessary. In fact, towards
the end, it appears that the winning agency often does so by only a single piece, often vying with
another agency closely in the last twenty to thirty rounds. Recognition of this state could lead to
a better version of the algorithm.

In order to improve the algorithm, one of our objectives is to consider past real world
scenarios and attempt to analyze them in light of game theory. One of the variables we did not
consider in our simulation which often plays an important role in real life is that of political
influence. An agency with more influence has a greater chance to force allies to give up more
data or be more honest in their dealings. However, this presents challenges in terms of managing
a persistent public ‘economy’ and how to represent it, something which has presented a serious
problem for game theory in the past. [7]

At this point in time, our research has yielded promising results. The algorithm appears
to sufficiently recognize and beat other agencies with competitive behavior, though it has shown
that it is not yet perfect. Investigation of these anomalies in our work is necessary to understand

 64

the practical application of such work to the real world, but we believe that it is within reason to
expect that such strategies could greatly benefit intelligence sharing within coalitions.

9. References

[1] Axelrod, Robert, The Evolution of Cooperation. Basic Books, New York, 1985.

[2] Buragohain, C., D. Agrawal, and S. Suri. “A game theoretic framework for incentives in P2P
systems.” Proceedings from the Third International Conference on Peer-to-Peer Computing,
2003.

[3] Cohen, Brian. “Incentives Build Robustness in BitTorrent” In Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems, June 2003.

 [4] Gupta, Rohit. and A. K. Somani. “Game theory as a tool to strategize as well as predict
nodes’ behavior in peer-to-peer networks.” Proceedings from the 11th International Conference
on Parallel and Distributed Systems, 2005.

 [5] Halpern, Joseph and V. Teague, “Rational secret sharing and multiparty computation:
extended abstract”. Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, 2004.

[6] Harsanyi, John C., “Games with incomplete information played by ‘Bayesian’ players.”
Management Science, vol. 14, 1967.

[7] Myerson, Roger B., Game Theory: Analysis of Conflict. Harvard University Press, 1997.

[8] Nash, John, “Equilibrium Points in n-Person Games.” Proceedings of the National Academy
of Sciences USA, 36:48-49, 1950.

[9] Osbourne, Martin J. and A. Rubinstein, A Course in Game Theory. MIT Press, Cambridge,
Mass., 1994.

[10] Scott, John. Social Network Analysis : a Handbook. Sage Publications, London, 1985.

 65

Report #5.

Defensive Information Operations: DETECTING MALICIOUS
EXECUTABLES USING ASSEMBLY FEATURE RETRIEVAL in an
Untrustworthy Environment

Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham
Department of Computer Science, The University of Texas at Dallas,
Richardson, Texas

{mehedy, lkhan, bxt043000 }@utdallas.edu

Published as Technical Rreport: UTD-CS-47-06

ABSTRACT
As a part of defensive operations in an untrustworthy model, we apply a novel, hybrid approach in
detecting malicious executables. It is different from other approaches, because rather than considering
only machine-bytes or assembly instructions of an executable, our approach combines byte-code with
assembly-instructions to obtain an effective set of features. We are able to find useful assembly features
using our two-phase Assembly Feature Retrieval (AFR) algorithm. We also apply an efficient technique to
determine the assembly instruction(s) for any given n-gram (n-byte sequence of machine code), for any
given executable. We also propose and implement a scalable solution to the n-gram feature extraction and
selection problem. Our solution solves limited memory problem and applies efficient data structures to
guarantee optimal running time. The AFR Model, a hybrid model for feature extraction, is presented. We
apply our model to real instances of malicious executables. The results indicate that our model always
performs better than other approaches that consider only byte-code or only assembly code to extract
features.

1 INTRODUCTION

In an untrustworthy model, defensive operations can be carried out in various ways. For
example, a party may send malicious executables along with normal to other party and as
a defensive operation the latter party has to detect this malicious executable. In this paper
we investigate this issue.

Malicious executable is a code that harms computer systems. There are different kinds of
malicious code such as: Worm, Virus, Exploit, Denial of Service (DoS), Flooder, Sniffer,
Spoofer, Trojan and so on, which differ according to the way they attack computer systems and
the malicious actions they perform. Some of them erase hard disks; some others clog the network,
while some others sneak into the computer systems to steal away confidential and valuable
information.

The traditional way of dealing with a known malicious executable is to apply signature based
detection (unique telltale strings). But this approach has two serious problems. First, this
approach involves significant amount of human intervention, and it may take long time (from
days to weeks) to discover the signature. Thus, this approach is helpless against “zero day”
attacks of computer worms. And second, this approach is hopeless against new attacks, i.e., it
cannot detect new attacks. So, automated detection techniques are becoming more popular and
are being developed by a number of researchers [1-8].

We propose a new model, called the Assembly Feature Retrieval (AFR) model that can
automatically detect new malicious executables. Our approach is content-based, which means it

 66

examines the content of the executables to determine its maliciousness. The principal idea of this
approach is to extract interesting features from the content of known executables (i.e., the training
set) and use these features to classify new executables (i.e., test data) using Data Mining. The
main challenge of this approach is the extraction of relevant features that can efficiently
distinguish between malicious and benign code. Our model applies a reverse engineering
technique to extract features.

Malicious executables usually consist of byte-code, which are sequence of bytes that are
specific to some operating systems and represents machine code for that system. If we could
generate the exact replica of the high-level source code from which the byte-code has been
generated, we would have acquired useful knowledge such as the structural, procedural and
functional commonality among different malicious programs. This knowledge would then be
efficiently applied to detect maliciousness of a program. But this is not possible at the state of the
art. Auto-generation of high-level source code from a given byte-code, which is also known as
de-compilation, is still an open research problem and far from being perfect. That is why some
researchers are trying to detect maliciousness in executables by extracting features from the byte-
code, like hex-string or n-grams of hex-dumps [9].

But there is an intermediate level between the high-level source code and the low-level
machine code. This is the assembly instruction level. There are software tools available that can
disassemble the machine executables into assembly instructions. By disassembling machine
instructions, we are able to extract more meaningful and relevant features than we are able to
extract from the byte-code. For example, if we use 4-grams as features, they may not be useful in
distinguishing malicious code from benign ones. Because a 4-gram of a byte-code is a sequence
of 4 bytes within the executable, which may represent part of a machine instruction, parts of more
than one instruction, or just some data inside the code block. Thus, the information carried out by
this 4-gram may be partial and incomplete. If we could decode this 4-byte block, and find out
whether it is a part of any instruction(s), then we could have used that instruction(s) as features
instead of this 4-byte, since the instruction(s) would carry more complete and meaningful
information. This observation is the central motivation behind our model.

Our contributions to this research work are as follows. First, we build a new hybrid model for
feature extraction, which utilizes the information obtained from disassembled executables as well
as from byte-code, to extract useful features. We are able to find useful assembly features using
our two-phase feature retrieval algorithm. Second, we apply an efficient address mapping
technique, called linear matching, to find the assembly instruction sequences that represent an n-
byte sequence of machine code (or n-gram, in short). Using this technique we can determine the
assembly instruction(s) for any given n-gram, for any given executable. Third, we propose and
implement a scalable solution to the n-gram feature extraction and selection problem. The
problem is, given a set of malicious and benign executables, to find the best n-grams that can
most efficiently distinguish between the malicious and the benign executables. Our solution not
only solves limited memory problem but also applies efficient and powerful data structures to
guarantee optimal running time. Thus, it is scalable to very large set of executables (in the order
of thousands), even with limited main memory and processor speed.

Our model is novel and different from other content-based approaches because. Other
approaches use only machine-code or only disassembled code to detect malicious executables
whereas we use their (machine, assembly) combination for detection. We also extract other useful
features, such as DLL usage and DLL function calls, from the disassembled executables and
combine these features with assembly instruction features. We apply Support Vector Machine
(SVM) on this feature set and perform cross validation to determine its classification accuracy.
We compare the accuracy of our features with the accuracies of only byte-code or only assembly
code features. We show that AFR model always extracts better features than the other two
approaches.

 67

The rest of the paper is organized as follows: section 2 discusses related works, section 3
presents and explains our model, section 4 shows the experiments and analyzes results, section 5
concludes with future directions. Attachments A and B describe algorithms and examples.

2 RELATED WORK

There are two main approaches to automate the detection of malicious executables: behavioral
and content-based. Behavioral approaches analyze the behavior of messages like source-
destination addresses, attachment types, message frequency etc. Examples of behavioral
approaches are social network analysis [1, 2], and statistical analysis of outgoing emails [3, 4].

Some content-based approaches analyze the content of the message, and try to generate
signature automatically. EarlyBird [5], Autograph [6], and Polygraph [7] are few examples of
content-based worm detection system that generate signatures.

Some other content-based approaches extract features from the byte-code and apply machine
learning to classify malicious executables. Stolfo et. al. [8] extracted DLL call information using
GNU Bin-Utils [10] from the header of Windows PE executables. Also, they extracted string
features using GNU strings program and used byte sequences obtained by hexdump as features.
They report accuracy of their features using different classifiers.

The work that most closely matches our work is by Maloof et. al. [9]. They extracted n-gram
features from the byte-code of executables and report high classification accuracy. Our approach
is different from this work in that after extracting n-grams, we go one step further to extract
assembly instruction sequences from the disassembled machine code. We show that this
reduction increase efficiency of detecting new malicious executables.

3 THE ASSEMBLY FEATURE RETRIEVAL (AFR) MODEL

The Assembly Feature Retrieval (AFR) Model consists of different phases and components. Here
we describe each of these in details.

Description of the Model

The Assembly Feature Retrieval (AFR) Model consists of two phases: the training phase and the
testing phase. The training phase is shown in Figure 1, and explained in details in section 3.1. The

Machine
Executables

Hex-dump

Disassemble

Byte Code

Assembly
Program

Feature-Extraction

Feature-Selection

Best
n-grams

n-grams

Assembly Feature Retrieval

Combined
Features

 Training Feature
Vectors

Compute Vector

Machine
Executables

Classifier

Fig. 1: Assembly Feature Retrieval Model (Training Phase)

DLL function call info

 68

testing phase is shown in Figure 5, and explained in section 3.2. In the training phase we convert
binary executables into byte-code files and Assembly Program files using UNIX Hex-dump
utility, and a disassembly tool respectively. From the byte-code files, we extract n-gram features
using our feature-extraction algorithm. Among large number of n-gram features, we select the
best features using our feature selection algorithm. We then apply our AFR algorithm to retrieve
assembly instruction sequences that best represent the selected n-gram features. These assembly
sequences are then used as features in combination with the n-gram features, and a classifier is
trained using the training set. In the testing phase, we extract the feature vector from the test file
using the assembly features extracted in the training phase, and test this vector against the
classifier. The classifier outputs the class prediction (benign, malicious) of the test file. Some of
the major challenges we face in implementing the model are:

i.) Too many features extracted: The number of features generated in the feature extraction phase
are so large that all of them cannot be stored in main memory. Again, because of large number of
features, time to extract and store all features could be very high. But we have solved both these
problems using very efficient data structures and scalable algorithms. Our solution is scalable to
very large dataset. Our solution is explained in details in section 3.1.

ii.) Byte-code features versus Assembly-instruction features: We have found in our experiments
that n-grams of byte-code features (i.e., n-byte sequence) show better classification accuracy than
n-grams of assembly features (i.e., n-instruction sequence). But further research enabled us to
adopt our hybrid approach, where we combine the byte-code features with assembly-instruction
features using the AFR model. The resultant features show better performance than the other two.
This approach is also explained in section 3.3.

The description of the major components of this model is given in the following sections.
Although many examples in this section mention 4-gram features, they are also applicable for
other values of n.

3.1 The Training Phase:

The Training phase is shown in Figure 1. In the training phase, we extract useful features from
the training dataset, and train a classifier using SVM. The training dataset consists of real
instances of malicious and benign executables. At first, we convert binary executables into byte-
code files using UNIX Hex-dump utility, and into Assembly Program files using a disassembly
tool called pedisassem. From the byte-code files, we extract n-gram features using our feature-
extraction algorithm. Among large number of n-gram features that are generated, we select the
best features using our feature selection algorithm. We then apply our AFR algorithm to retrieve
assembly instruction sequences that best represent the selected n-gram features. These assembly
sequences are then used as features. These assembly features are then merged with Dynamic Link
Library (DLL) function call features. A classifier is then trained using these features. The major
components of the training phase as explained below:

3.1.1 Hex-dump:

We apply the Unix hexdump utility (hexdump –x) to get the hexadecimal byte-code from the
Executables. This utility outputs a sequence of byte-codes from the binary files in separate lines,
where each line contains the address and eight columns of byte-code, each column containing a
two-byte hexadecimal number.

Here is a sample two lines of output that hexdump generates:

 69

00000f0 016e ... 6c2f 6e61 2f67
0000100 7453 … 1700 1800 000a

The first number in each line (e.g.: 00000f0) denotes the starting address of the line. Actually, the
address is the offset from the starting of the executable. The next eight numbers represent the next
16-bytes of the binary. For example, the first two bytes of the first line are: 016e, where 01 is the
upper byte (i.e., byte# 000000f1) and 6e is the lower byte (i.e., byte# 000000f0). We generate
byte-code for each of the executables in the training set and save in separate disk files. We will
refer to these files as byte-code files.

3.1.2 Disassembly

We have used a utility to disassemble the binary files and generate the assembly program
corresponding to the binary. This open source software is called PEDisassem, which stands for
Portable Executable Disassembler. It is written in java and can be obtained for free from [11]. It
can generate assembly program from a Windows PE (Portable Executable) binary file, with
detailed information like DLL usage, DLL function calls, resource information, and so on.
Example 1 in Appendix 2 illustrates a sample disassembly generated by the disassembly tool. We
generate assembly program for each of the executables in the training set and save in separate
disk files. We will refer to these files as assembly-program files.

3.1.3 Feature extraction

Features are extracted from the byte-code files in the form of n-grams, where n = 2,4,6,8,10 and
so on. Given a 11-byte sequence: 0123456789abcdef012345,
The 2-grams (2-byte sequences) are: 0123, 2345, 4567, 6789, 89ab, abcd, cdef, ef01, 0123, 2345.
So, the 2-grams are actually 2-bytes sliding window.
The 4-grams (4-byte sequences) are: 01234567, 23456789, 456789ab,...,ef012345
Our Feature Extraction Algorithm (FEA) extracts all the n-grams for a given value of n from the
byte-code files. This algorithm is explained in the following paragraphs.

3.1.4 Feature extraction algorithm (FEA):

Before going into details of the algorithm, we need to address the issue of limited memory, slow
searching time, and how we solved it. For our 1435 executables dataset, there are 56 million 4-
grams generated. If we store n-grams as strings, then the total memory required to store these 4-
grams is around 448MB (= 56M x 8), since we need 2 bytes to store a 1-gram in string format.
Also there are other information that need to be stored for each 4-grams, such as its positive
frequency (i.e., total number of times it appears in the positive dataset), and its negative
frequency (i.e., total number of times it appears in the negative dataset). We need these numbers
to calculate information gain for each feature. So, we need at least 8 more bytes (two integers) to
store these frequencies. Thus, the total memory requirement becomes at least 896 MB (= 56M x
16). Now, if these values are wrapped inside a class, then each object of the class may require
more than 16 bytes, so the total memory requirement just to store the n-grams would go beyond
1GB. For higher grams, this requirement becomes higher. Unless we have a computer with tens
of Gigabytes main memory, we are unable to store all these n-grams.

We have solved the memory problem using disk I/O. At first, some of the n-grams are kept in
memory, until their total number exceeds a certain threshold. After that, they are written to disk
and memory is cleared for storing another set of n-grams. If there are already some n-grams

 70

stored in disk, we merge the content of the disk with the content of the memory and write the
merged n-grams to disk. In order to ensure efficient merge operation, we store all the n-grams in
lexicographically non-decreasing order, both in memory and disk.

The next issue is how to store the n-grams in memory. Although it seems trivial at a first
glance, actually it is not. If we use a linear data structure like linked list or array to store the n-
grams, the running time would be too high, because when an n-gram is extracted from the input
file, we have to search whether it is already in the list. If it is in the list, we have to update the
frequency of the corresponding element of the list; otherwise we have to add it to the list. Now,
this search operation requires linear time. Even if all the n-grams could be stored in memory, it
would require O(N) searches to find one n-gram, where N is the total number of n-grams. So the
total number of searches would be O(N2). From our previous example, given N=56 million, we
have around 33.0x1014 searches in total. This would require several days on a 2GHz machine. So
we must adopt a more efficient data structure to store the n-grams. We have used Adelson Velsky
Landis (AVL) tree to store the n-grams in memory [12]. An AVL tree is a height-balanced binary
search tree. It has the property that the absolute difference between the heights of the left sub-tree
and the right sub-tree of any node is at most one. During insertion or deletion, if this property is
violated, a balancing operation is performed and the tree regains its height balanced property. It is
guaranteed that insertions and deletions are performed in logarithmic time. So, in order to search
an n-gram in memory, we now need log2(N) ≈ 29 searches. Thus, the running time is reduced
about a million times (at most), which is of the order of a few minutes on the same machine! But
in our experiments, it actually takes around two to three hours because of the overhead of disk I/O
involved.

Now let us look back to the memory problem again. In order to merge the memory content
with the disk content, we read n-grams from memory by traversing the tree in-order so that the
sequence read out is sorted. The first n-gram read from the tree is compared with the first n-gram
stored in disk. If they are the same, then their frequencies are added and the n-gram, along with
its frequencies is written to a new disk file. If they are not the same, then the memory n-gram is
written to new disk file if it is lexicographically smaller than the other and vice versa. The
pointers are updated accordingly to read out the next n-gram. When all n-grams are written to the
new file, the previous file is deleted and the new file is renamed to old file.

Algorithm 1 in Appendix 1 sketches the FEA. The for loop at line 3 runs for each byte-code
file in the training set. The inner while loop at line 4 gathers all the n-grams for a file and adds it
to the AVL tree. At line 7, we check whether tree size exceeds threshold value. If it exceeds, then
either we save the contents of the tree in a new file (line 8) or merge the contents of tree with file
(lines 9-11), and remove all the nodes from the tree (line 12).

3.1.5 Feature Selection Algorithm (FSA)

Since the number of extracted features is very large it is not possible to use all of them for
training. To see why, first we notice that, if all the features are to be used, then we would need
large amount of memory to store the feature vectors. Secondly, even if we were able to store the
feature vectors in main memory, training time would be too long to be practical. Thirdly, any
classifier would be confused with such a large feature set, because most of the features would be
redundant or irrelevant. So, we are to choose a small, relevant and useful feature set from the very
large set. We choose information gain as the selection criterion, because it is one of the best
criteria used in literature for selecting the best feature(s) from a set of features. Our feature
selection algorithm selects the best features from the all extracted features, using the information
gain criterion.

 71

Information gain can be defined as follows: “It is actually a measure of the effectiveness of an
attribute in classifying the training data” [13]. If we split the training data on this attribute values,
then information gain gives the measurement of the expected reduction in entropy after the split.
The more an attribute can reduce entropy in the training data, the better the attribute in classifying
the data. Information Gain of an attribute A on a collection of examples S:

∑
∈

−≡
)(

)(
||
||

)(),(
AValuesV

v
v SEntropy

S
S

SEntropyASGain

(1)

Where Values(A) is the set of all possible values for attribute A, and Sv is the subset of S for
which attribute A has value v. Entropy(S) is the entropy of S. In our case, each attribute (i.e.,
feature) has only two possible values (0, 1). If this attribute is present in an example (i.e.,
executable) than the value of this attribute for that example is 1, otherwise it is 0. So, in our case,
information gain would be as in (2):

),(),()(),(11
11

00
00 NPEntropy

NP
NP

NPEntropy
NP
NP

SEntropyASGain
+
+

−
+
+

−≡

(2)
where,
P = total number of positive examples
N = total number of negative examples
P0 = total number of positive examples having attribute value 0
P1 = total number of positive examples having attribute value 1
N0 = total number of negative examples having attribute value 0
N1 = total number of negative examples having attribute value 1

Note that, P0 + P1 = P and N0 + N1 = N
Entropy of a given set of examples is a measure of impurity or homogeneity of that data set. If we
have total p positive examples and n negative examples, then entropy of this set of examples is
given by (3).

)(log)(log),(22 pn
n

pn
n

pn
p

pn
pnpEntropy

++
−

++
−=

(3)

Now, the next problem is to select the best features that have the highest information gain. In
our experiments, we choose best 500, 1000, 2000, 4000, 5000, and 10000 features. Since the total
number of features is very large, sorting them would require O(Nlog2N) time and O(N) memory.
As stated earlier, we cannot afford large memories to store all the n-grams. But we have adopted
efficient data structures and used them smartly, which enabled us to select best S features in only
O(Nlog2S) time using O(S) memory. For S=500 and N=56 million, the gain in memory usage is
112,000 times and the gain in running time is almost three times. Here, we use the Heap data
structure as a priority queue. Heap is a balanced binary tree with the property that the minimum
(maximum) element of any sub-tree remains at the root of the sub-tree. So, a Min-Heap always
has the minimum element at its root. Heap is implemented using array. We sketch our FSA in
Algorithm 2 of Appendix 1. In order to find the best S features, for S = 500, 1000, 2000, 4000,
5000 and 10000. We create Heaps of size S. The outer while loop in line 1 iterates for all the n-
grams saved in file during feature extraction. Line 2 reads the next n-gram from file; line 3
calculates its information gain. The inner for loop runs for each Heap. We use a Min-Heap, so
that the n-gram with the minimum information gain is always at the root of the Heap. The next n-

 72

gram is inserted into a Heap if the Heap has less than S elements (line 7). Otherwise, we check
whether its information gain is less than that of the n-gram at the root of the Heap (line 8). If it is
less, then we discard this n-gram and read the next one from file (line 9). Otherwise, we replace
the root with the new n-gram and restore the Heap property in logarithmic time (lines 10-11). So,
each insertion takes at most O(log2N) searches. For the 10,000 size Heap, each insertion takes
only 14 searches in the worst case. We continue to read all the n-grams and inserting (or
discarding) it into the Heap. When all n-grams have been processed in this way, the Heaps
contain the best S attributes according to information gain.

3.1.6 Dynamic Link Library (DLL) calls

The assembly program file contains information about DLL function calls. Using this
information, we can get the DLL function names that have been called from the program. Each
“called” function is used as a feature. So, we extract all the DLL function features from all the
assembly program files and again apply a selection process to choose the best 500 function calls
according to information gain. These features are combined with the features retrieved using AFR
algorithm.

3.1.7 Assembly Feature Retrieval (AFR)

Assembly feature retrieval is at the heart of the model. It is described in details in section 3.3. The
assembly retrieval algorithm retrieves appropriate assembly instruction sequence of each selected
n-

gram feature, which are selected using the FSA. These sequences are then used as features.

3.1.8 Compute Vector

A feature vector consists of 0’s and 1’s. Each vector Vi = {Vi,1, Vi,2 ,… Vi,F}, i= 1…T , where F is
the total number of features, and T is the total number of training examples. So each element Vi,j
represents the value of feature j in example i. If this value is 0 then this feature is not present in
this example and vice versa. We compute all these vectors by parsing the byte-code files as well
as the assembly program files and searching the instruction sequences or byte sequences that this
feature represents. These feature vectors are then used to train the classifier.

3.2 The testing phase:

The testing phase is sketched in figure 2. The first few components of the testing phase, i.e.,
Executable File, Disassemble, Assembly Program, Computer Vector, and Feature Vector are
similar to those explained in training phase. We use SVM to test the example against the
classifier obtained in training phase. The classification is one of {benign, malicious}

Fig. 2: The Assembly Feature Retrieval Model: Testing phase

Feature
Vector

Test with Classifier Class
Prediction

Test Program
(Executable)

Assembly
Program

Disassemble Compute Vector

 73

3.3 Assembly Feature Retrieval (AFR) Algorithm

The AFR algorithm is used to obtain assembly instruction sequences corresponding to the n-gram
features. Before sketching the algorithm, we describe the problem with some examples and then
explain how it has been solved.

The first problem is: given an n-gram feature how to find its corresponding assembly code.
The code should be searched in all the assembly programs we generated in the training phase.
The solution consists of several steps. First, we apply our linear matching technique: we use the
offset address of the n-gram in the byte-code file to look for instructions at the same offset at the
assembly program file. Based on the offset value, one of the three situations may occur:

i. the offset is before program entry point, so there is no corresponding code for the n-gram. We
refer to this address as Address Before Entry Point (ABEP).
ii. there is some data at that offset, meaning this address points to data in code segment. We refer
to this address as DATA.
iii. there is some code at that offset. We refer to this address as CODE.

If, for any n-gram, total number of CODE instances is no greater than C percent of the total
number of instances, then we retain the n-gram feature as is, i.e., we do not replace it. The reason
is that, although this n-gram represents very few assembly instruction sequences, it may contain
some important encoded data. We call these n-grams as “essential n-grams”. If total number of
CODE instances is greater than C percent for any n-gram, then the n-gram is replaced with the
assembly instructions. In our experiments, we set C = 20%. There are multiple possible assembly
code sequences for the same n-gram. We find all the occurrences of the n-gram to find all
possible assembly code sequence that represents this n-gram. Example 2 in Appendix 2 illustrates
this one-to-many mapping between n-gram and instruction sequences.

The second problem is to select the best sequence of instructions from all the instruction
sequences. For ease of understanding, from now on we will refer to a sequence of consecutive
assembly instructions as an “instruction-string” or only “string”. We apply two different
heuristics to find the best sequence:
i. The Most Frequent Substring (MFS) heuristic
ii. The Most Distinguishing String (MDS) heuristic
Before going into the details of the heuristics, we describe how instructions are represented in our
approach.

3.3.1 Standard representation of instructions:

We adapt a standard representation for the instructions, so that we can easily store and compare it
with other strings. We convert each instruction to this standard form as soon as we read it from
memory.

a) Representing Instruction:
An Instruction I is a tuple, I = <Q(I), P(I)>
Where, Q(I): instruction name (character string) and

P(I) = {p1(I),..., pR(I)} ; 0≤R ≤2: are parameters. So, each instruction may have zero, one
or

two parameters.

 74

b)Representing Parameter:
Each parameter pi may be one of four types:

i. integer constant
ii. register variable
iii. memory variable
iv. port variable

We use the function T(p) to denote the type of parameter p. Each parameter p is also represented
as a character string, which is one of the followings:

i. “num”, if T(p) is integer
ii. “reg”, if T(p) is a register

iii. “mem”, if T(p) is a memory
iv. “port”, if T(p) is a port

For example, the instruction: mov eax, dword[eax+45]
Will be represented by the string: “mov.reg.mem”
where, “mov” is the instruction name, “reg” is the type name for the register “eax” and ”mem” is
the type name for the memory variable “dword[eax+45]”. We use a dot “.” to separate different
parts of the instruction.

c) Comparing instructions:
We define equivalence of instructions as follows. Two instructions x and y are equivalent if all of
the following conditions are met:
i. Q(x) = Q(y)
ii. R(x) = R(y)
iii. ∀i (T(pi(x)) = T(pi(y)))
That is, two instructions are equivalent if they have the same names, same number of parameters
and corresponding parameter types are the same. Actually, we can use standard string comparison
functions to compare two instructions, since each instruction is represented as a string.

3.3.2 The Most Frequent Substring (MFS) heuristic:

Here, the best sequence is defined to be the sequence which has the highest frequency of
occurrence in the given set of sequences. So, this problem reduces to finding the most common
sequence among all sequences. It is possible that the best sequence is a substring of some
sequence(s). Thus, this is a string matching problem where we want to find the Most Frequent
Substring (MFS) that occurs among a set of strings.

One obvious hurdle in solving this problem is that a null string is also a substring of any string,
so null will always be the MFS for any set of strings. So, we must set a lower bound to the
number of characters in the MFS. If the lower bound is L, then the problem is to find the MFS
with at least L characters. This problem can be solved by finding all possible Common Substrings
(CSs) and picking the CS that has the highest occurrence. This problem can be formally defined
as follows:

The best feature selection problem:
Let
S = {I1, I2,…,IN}: be the set of all instruction sequences. We will refer to each of these sequences
as an instruction string. So, S is the set of instruction strings.
Si, j = {Ii,…,Ij}: be the subset of S containing all elements from Ii to Ij, i <= j
Ii = {Ii,1, I i,2,…,I i, j,…,}:be the ith instruction string, where I i, j is the jth instruction in the string
Xi, j, l = {I i, j , I i, j+1 ,…, I i, j+l-1}: a substring of the string Ii, starting from I i, j and having length l

 75

f(Y): frequency of occurrence of substring Y in the set of strings S. In other words, f(Y) is the total
number of strings in S of which Y is a substring.

The problem is to find the Most Frequent Substring MFSL, having length >= L,

)(,,
maxarg
,, ljiLljijiL XfMFS ≥∧≤∀=

(4)

A recursive solution to the best feature selection problem:

Let
 LCS(x, y) = Longest Common Substring of the strings x and y.

{ LyxLCSifyxLCS
otherwiseL yxLCS ≥= |),(|),,(

,),(φ

(5)

That is, LCSL(x, y) is the longest common substring of x and y if its length >= L, and null,
otherwise. Now, let us denote MFSL(i, j) to be the MFS of the subset Si, j, having length >= L,
which includes a substring of Ii. We define it recursively as:

(6)

So, if the LCSL between MFSL(i, j-1) and Ij is not null, then this LCSL is the MFSL(i, j), otherwise,
MFSL(i, j) is equal to MFSL(i, j-1). We assume that all sequences have at least L instructions. In
order to determine the frequency of MFSL(i, j), we will define two more equations in (6) and (7):

{ φ≠=),(,1
,0)),((yxLCSif
otherwiseL LyxLCSf

(7)
That is, frequency of the LCSL between x and y is 1, if this LCSL is not null, and 0 otherwise. So
the frequency of MFSL(i, j) can be defined as follows:

⎪
⎩

⎪
⎨

⎧

= =

=−∧<−
≠−∧<+−

jiif

IjiMFSLCSjiifjiMFSf
IjiMFSLCSjiifjiMFSfL

jLLL
jLLL

jiMFSf ,1

)),1,(()),1,((
)),1,((,1))1,(()),((
φ

φ

(8)
That is, frequency of MFSL(i, j) is one more than the frequency of MFSL(i, j-1) if we could find a
non-null LCSL between MFSL(i, j) and Ij, otherwise, it is the same as MFSL(i, j-1).

Now, we are ready to define our goal: the MFS. In fact, it is the MFS L having highest frequency.
In other words, the goal is to find:

 Ii , if i=j
 MFSL(i, j) = LCSL(MFSL(i, j-1), Ij)), if i<j ∧ LCSL(MFSL(i, j-1), Ij)) ≠ φ
 MFSL(i, j-1), otherwise

 76

)),((maxarg
,, jiMFSfMFS LjijiL <=∀=

 (9)

Solution to equation (9) involves invocations of the recursive equations (6) and (8). The
solutions to equation (6) and (8) can be found using dynamic programming with two 2-
dimensional arrays; one is MFSL[NxN] for storing all the MFSL’s and another is f[NxN] for
storing f ’s. Then the solution to the equation (9) is the MFSL[i, j] for which f[i, j] is the
maximum. The entries of the tables QL and f can be filled up in a bottom-up fashion. The
complexity of this algorithm would be O(N2K) where N is the total number of sequences and K is
the worst case running time of LCS among any pair of sequences. Algorithm 3 in Appendix 1
sketches the dynamic programming to find MFS of a given set of strings S.

3.3.3 The Most Distinguishing Substring (MDS) heuristic:

The MFS heuristic selects the most frequently occurring substring among all the instruction
strings. But there is no guarantee that MFS would be the best feature in distinguishing the
malicious executables. In order to guarantee that we have such a feature in our feature set, we
apply MDS heuristic. According to this heuristic, we select the instruction string that has the
highest information gain. In order to find the MDS, we use a technique similar to the FEA
(section 3.1.4) and FSA (section 3.1.5). We keep an AVL-tree for storing all the assembly
sequences found using linear matching. When we find a new assembly instruction sequence, we
insert it into the tree, updating Pi and Ni values (please see section 3.1.5) as necessary. When all
sequences have been collected, we select the best 500 among them according to information gain
criterion.

Algorithm 4 in Appendix 1 sketches the AFR algorithm. It consists of two phases. Phase I
collects the assembly sequences corresponding to the n-grams, selected using FSA. Each byte-
code file is scanned and n-grams are extracted. If the n-gram is among the selected ones (if found
applying binary search), then we note the offset of the n-gram in the byte-code file and find all
the assembly instructions at that offset in the assembly program file. These instructions are added
to the list of instruction sequences corresponding to this n-gram. Phase II selects the best
sequence using MFS and MDS heuristics. An illustrative example of the AFR algorithm is
explained in Example 2, Appendix 2.

4 EXPERIMENTS

In this section we discuss out data set, experimental setup and results.

4.1 Data set

Our dataset consists of 597 benign and 838 malicious codes. The benign executables have been
collected from different windows machines. The malicious executables have been collected from
[16], which contains a large collection of malicious executables. We have used only a subset of
this collection, under the names: “Email-worm”, “Net-worm”, “IM-worm” and “worm”. We have
chosen only the Win32 executables.

4.2 Experimental setup

We implement our algorithms in Java with JDK 1.5. We use the libSVM library [17] for SVM.
Our experiments are run on a Sun Solaris machine with 4GB main memory and 2GHz clock

 77

speed. The disassembly and hex-dump are done only once for all machine executables and the
resulting files are stored. We then run our experiments on the stored files.

4.2 Results

We have run our algorithm on the features selected by AFR model, as well as by Hex-gram only
and Assembly-gram only model. We have applied different classifiers from different software
suits: libSVM and WEKA. We have runn SVM using libSVM and ran Naive Bayes (NB) and
Adaboost using WEKA. We report the results obtained for best 500 selected n-gram features
only. Although we have run our experiments for best 1000, 2000 and larger number of selected n-
gram features, we do not report them, because, increasing the number of selected features do not
show any significant change in classification accuracy.

Table 1. Comparison of the classification accuracy between AFR model and other models. By
byte-code 4-gram we mean 4 consecutive bytes of machine code, while assembly 4-gram means 4
consecutive assembly instructions

Classifier AFR

accuracy (%)
Byte-code
4-gram accuracy(%)

Assembly
4-gram accuracy (%)

Best
Model

SVM1 97.3 95.2 90.6 AFR
NB2 91.5 87.6 84.0 AFR
Adaboost2 92.7 89.5 84.9 AFR
Avg. 93.8 90.8 86.5 AFR

1libSVM, 2Weka

The results presented in Table 1 display the classification accuracies of different feature
extraction models. The column under “AFR accuracy(%)” displays the accuracy of AFR model,
which retrieves assembly features using 4-gram byte code features, combines these assembly
features with essential 4-gram byte code features and DLL function call features. The column
under “Byte-code 4-gram accuracy(%)” displays the accuracy of byte-code n-gram model. It
reports the accuracy of the best 500 selected features. The row headed by SVM reports the
accuracy of each of these models when SVM is used as classifier. For example, the first value of
the row headed by SVM is 97.3%, which is the classification accuracy of AFR with SVM. It is
2.1% higher than its closest model, and 6.7% higher than the worst one. We see that accuracy of
AFR is always the highest and at least 2.1% higher than its closest model. The average accuracy
of AFR is also 3% higher than the second highest and 6.7% higher than the last one.

Table 2. Comparison of the classification accuracy using SVM between AFR model and other n-
gram models for different values of n.

n AFR

accuracy (%)
Byte-code
n-gram accuracy(%)

Assembly
n-gram accuracy (%)

Best
Model

4 97.3 95.2 90.6 AFR
6 97.6 95.5 87.4 AFR
8 97.1 94.6 88.3 AFR
10 97.2 95.1 73.6 AFR
Avg. 97.3 95.1 86.5 AFR

Table 2 reports the accuracies of different model for different n-grams using SVM. We choose

SVM as the classifier, because as suggested by the results in Table 1, SVM provides the highest

 78

accuracy on all models. Also, in table 2 we see that there accuracy of AFR is always highest
irrespective of the value of n. The best accuracy for AFR is achieved with n=6, and it slightly
decreases with incresed value of n. Accuracy of Byte-code n-grams is always lower than AFR,
with 2.5% being the highest difference and 2.2% being the average difference. We also observe
that the accuracy of Assembly n-gram becomes worse as the value of n is increased, with 73.6%
being the worst value. The reason is that longer sequences of assembly code are rarer, and they
cannot play any useful role in distinguishing between malicious and benign executables.

In summary, we find that our proposed hybrid model is always better than other n-gram
models that rely only on byte code or Assembly instructions. This is because many n-gram
features that are selected using the FSA (see section 3.1.5), bear only partial data, since they are
part of one or more machine instructions. AFR retrieves the whole instructions and replaces the
partial ones. In this way, AFR finds more complete and useful features. On the other hand, if
anyone uses only assembly features, he may miss important encoded data that could be used as
important feature. Thus, AFR model combines best features from both machine level bytes as
well as assembly instructions and gains higher classification accuracy.

5 CONCLUSION

Our AFR model is a completely novel idea in malicious code detection. It extracts useful features
from disassembled executables using the information obtained from machine executables. It then
combines the assembly features with other features like DLL function calls and encoded
machine-bytes. We have addressed a number of difficult implementation issues and provided
very efficient, scalable and practical solutions. The difficulties we have faced during
implementation are related with memory limitations and long running times. By using efficient
data structures, algorithms and disk I/O, we are able to implement a fast, scalable and robust
system for malicious code detection.

Preliminary results prove our claim that this model is going to produce very high accuracy. In
future we would like to explore a number of different possibilities, such as: First, extracting
useful assembly features directly from the assembly program without using byte-code features;
Second, analyzing DLL function call pattern; Third, analyzing actions taken before or after each
DLL call; and Finally, looking for a semantic signature or pattern instead of simple string
patterns.

 79

BIBLIOGRAPHICAL REFERENCES

[1] Golbeck, J., and Hendler, J. Reputation network analysis for email filtering. In CEAS (2004).
[2] Newman, M. E. J., Forrest, S., and Balthrop, J. Email networks and the spread of computer

viruses. Physical Review E 66, 035101 (2002).
[3] Symantec Corporation. W32.Beagle.BG. Online, 2005.

http://www.sarc.com/avcenter/venc/data/w32.beagle. bg@mm.html.
[4] Schultz, M., Eskin, E., and Zadok, E. MEF: Malicious email filter, a UNIX mail filter that

detects malicious windows executables. In USENIX Annual Technical Conference - FREENIX
Track (June 2001).

[5] Singh, S., Estan, C., Varghese, G., and Savage, S. The EarlyBird System for Real-time Detection
of Unknown Worms. Technical report - cs2003-0761, UCSD, 2003.

[6] Kim, H. A. and Karp, B., Autograph: Toward Automated, Distributed Worm Signature
Detection. in the Proceedings of the 13th Usenix Security Symposium (Security 2004), San
Diego, CA, August, 2004.

[7] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Signatures for
Polymorphic Worms. In Proceedings of the IEEE Symposium on Security and Privacy, May
2005.

[8] M. Schultz, E. Eskin, E. Zadok, S. Stolfo, Data mining methods for detection of new malicious
executables, in: Proc. IEEE Symposium on Security and Privacy, 2001, pp. 178--184.

[9] Kolter, J. Z., and Maloof, M. A. Learning to detect malicious executables in the wild.
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining Seattle, WA, USA Pages: 470 – 478, 2004.

[10] Cygnus. GNU Binutils Cygwin. Online publication, 1999.
http://sourceware.cygnus.com/cygwin
[11] Windows P.E. Disassembler.

http://www.geocities.com/~sangcho/index.html
[12] GoodRich, M. T., and Tamassia, R. Data structures and algorithms in Java. John Wiley &

Sons, Inc. ISBN: 0-471-73884-0.
[13] Mitchell, T. Machine Learning. McGraw Hill, 1997.
[14] Weka: collection of machine learning algorithms for data mining tasks.

http://www.cs.waikato.ac.nz/ml/weka/
[16] VX-Heavens: http://vx.netlux.org/
[17] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

 80

ATTACHMENTS

I. Algorithms

Algorithm 1: The Feature Extraction Algorithm Algorithm 2: The Feature Selection Algorithm

Algorithm 4: The Assembly Feature Retrieval

Algorithm Extract_Feature (B)
B ={ B1 , B2, … , BK} : all byte-code files
1. T empty tree // Initialize AVL-tree
2. F new file // Initialize disk file
3. for each Bi ∈ B do
4. while not EOF(Bi) do //while not end of file
5. g next_ngram(Bi) // read next n-gram
6. T.insert(g) /* insert into tree and update

 frequencies as necessary */
7. If T.size > Threshold then //save or merge
8. if F is empty then F T.inorder
 //save tree data in sorted order
9. else Ft new file //initialize temporary file
10. Ft merge(T.inorder, F.read)
 //merge tree data with file data and save
11. F Ft // replace file with merged data
12. T empty tree //release memory

Algorithm Select_Feature (F, H, P, N)
F: the file containing all n-grams

H = {Hs | Hs is a heap of size S
 ∧ S ∈ {500, 1000, 2000, 4000, 5000, 10000}
P: total number of positive examples
N: total number of negative examples
1. while not EOF(F) do
2. <g, p0, n0, p1, n1> next_ngram(F)
 //read n-gram with frequency counts
5. gain Gain(p0, n0, p1, n1, P, N) // using (2)

5. for each Hs ∈ H do

7. if Hs.total_Nodes< S then Hs.insert(g, gain)

8. else if gain <= Hs.root.gain then
 continue //discard lower gain n-grams

12. else Hs.root <g, gain> //replace root

14. Hs.restore //apply restore operation

Algorithm Find_MFS(S, L) returns MFS of S
S: {I1, … , IN}: the set of instruction strings
L: lower limit of string length
MFSL[NxN]: Table to hold MFSL[i,j] values
//see (6)
fL[NxN]: Table to hold fL[i,j] values //see (8)
1. for i=1 to N do MFSL[i,i]=Ii //initialize
2. MFS φ, max 0 //initialize
3. for l=2 to N-l do //for all possible lengths
4. for i=1 to l-1 do
5. if LCSL(MFSL[i, j-1], Ij) ≠ φ then
6. MFSL[i, j] LCSL(MFSL[i, j-1],
Ij)
7. fL[i, j] fL [i, j-1] + 1
8. if fL[i, j] > max then
9. max fL[i, j], MFS MFSL[i,
j]

Algorithm 3: Finding the Most Frequent Sequence

 81

Algorithm Assembly_Feature_Retrival(G, A, B)
 G = {g1, g2,...,gM }: the selected n-gram features
 A ={ A1 , A2, … , AL } : all Assembly files
 B ={ B1 , B2, … , BL } : all Byte-code files
 M = #of selected features
 L = #of training files
 Define
 Si = {Si,1 , ..., Si, j , ...}: the assembly instruction
 sequences corresponding to gi, 1≤ i ≤ M
 Si, j = {Ii, j, 1,..., Ii, j, k , ...}: the jth instruction sequence
 of Si , 1≤ i ≤ M ; Ii, j, k is the kth instruction of Si, j
LCS(X,Y) : the longest common substring of the two
sequences X and Y.
1. for l = 1 to M do Si empty //initialize lists
//phase I: sequence collection
2. for each Bl ∈ B do
3. offset 0 //current offset in file
4. while not EOF(Bl) do //while not end of file
5. g next_ngram(Bl) // read next n-gram
6. <i, f> binarySearch(G,g) // seach g in G
7. if f=true then // found
8. j = |Si| + 1 //add another sequence
9. Si, j empty // initialize new sequence
10. for each instruction r found within the address
 range [offset, offset + n] of Al do
11. Si, j Si, j ∪ r //add to the
sequence
//phase II: sequence selection
12. for i = 1 to M do //for each Si
13. MFS Find_MFS(Si)
14. MDS Best sequence according to Info_gain
15 MDS MFS

 82

II. Examples

Example 1: Disassembly of an executable

Disassembly of File: OINFOP11.EXE

DateStamp=3F0FD005:Sat Jul 12 02:08:21 2003
Code Offset=00000400, Code Size = 0019E00
Data Offset=0001A200, Data Size = 0000800
Number of Objects = 0003 (dec), Imagebase = 30000000h
Object01: .text RVA: 00001000 Offset: 00000400 Size: 00019E00 Flags:
60000020
+++++++++++++++++++ RESOURCE INFORMATION
Number of Resource Types = 4 (decimal)
Resource Type 001: REGISTRY

 … … … (rest is omitted for brevity)
+++++++++++++++++ STRING INFORMATION
Number of Strings = 1 (decimal)
Name: StringId_0007 "OffProv11"
+++++++++++++++++++ IMPORTED FUNCTIONS
Number of Imported Modules = 11
Import Module 001: OInfo11.OCX

… … … (some are omitted for brevity)
Import Module 011: WINSPOOL.DRV
+++++++++++++++++++ IMPORT MODULE DETAILS
Import Module 001: OInfo11.OCX
Addr:00019BDC hint(0005) Name: GetOfficeData

… … … (rest are omitted for brevity)
Import Module 002: KERNEL32.dll
Addr:00019E8A hint(0103) Name: GetCommandLineA

… … … (rest are omitted for brevity)
+++++++++++++++++++ EXPORTED FUNCTIONS
Number of Exported Functions = 10 Addr:300122C7 Ord: 1 (0001h) Name:
_ctime64

… … … (rest are omitted for brevity)
+++++++++++++++++++ Possible Strings Inside Code Block
:3000149C....NullString..Invalid DateTime

… … … (rest are omitted for brevity)
+++++++++++++++++++ ASSEMBLY CODE LISTING
//****** Start of Code in Object CODE Program Entry Point = 30011BAD
(OINFOP11.EXE File Offset:00000400)
:30001000 A89F0100 DWORD 00019FA8 ;;

… … … (some are omitted for brevity)
:30001604 43 inc ebx
:30001605 4F dec edi
:30001606 66666963654F62 imul sp, word[ebx+65], 624F

… … … (rest are omitted for brevity)

 83

Example 2: working of AFR algorithm, and example of one-to-many relation from n-gram to
assembly instructions.

This is an example of the collection of assembly sequences corresponding to the n-gram
“00005068”. Note that this n-gram has 9 occurrences. The bolded portion of the op-code in Table
3 represents the n-gram.

Table 3. Assembly code sequences for “00005068”.

No. Op-code Assembly code
I1,1
I1,2
I1,3

E8B7020000
50
6828234000

call 00401818
push eax
push 00402328

I2,1
I2,2
I2,3

0FB6800D020000
50
68CC000000

movzx eax,byte[eax+20]
push eax
push 000000CC

I3,1
I3,2
I3,3

8B805C040000
50
6801040000

mov eax,
dword[eax+45]
push eax
push 00000401

I4,1
I4,2
I4,3

0FB6800D020000
50
68CC000000

movzx eax,byte[eax+20]
push eax
push 000000CC

I5,1
I5,2
I5,3

6890100000
50
683C614000

push 00001090
push eax
push 0040613C

I6,1
I6,2
I6,3

E8841C0000
50
68207F4000

call 004032CC
push eax
push 00407F20

I7,1
I7,2
I7,3

8D8010010000
50
6807504000

lea eax, dword[eax+110]
push eax
push 00405007

I8,1
I8,2
I8,3

25FFFF0000
50
68E8164100

and eax, 0000FFFF
push eax
push 004116E8

I9,1
I9,2
I9,3

25FFFF0000
50
68600E4100

and eax, 0000FFFF
push eax
push 00410E60

These instruction sequences or “instruction strings” are collected in Phase I of the AFR
algorithm. If the lower limit, L = 2, then the best instruction sequence according to MFS heuristic
appears to be “push push”, having frequency = 10. If L = 3, then there are multiple solutions with
frequency = 2: “and push push” , “call push push”, “mov push push” and so on. The instruction
strings selected using MDS heuristics depened on the information gain of the particular string.

 84

APPENDIX A:
ROLE-BASED ACCESS CONTROL AND USAGE CONTROL POLICIES FOR
INFOSPHERES

Ravi Sandhu, Min Xu; George mason University

Bhavani Thuraisingham, The University of Texas at Dallas

To be published as a GMU Technical Report

1. THE PROBLEM

In the work discussed in report #2, we examined basic role-based access control policy for secure
data sharing and conducted experiments to determine the amount of information that is lost due to
enforcing security. While the access control policies utilized in this paper is a useful and flexible
policy, the security community is moving towards a full-scale role-based access control model
and more recently the usage control model. However none of these models have been examined
for a coalition environment. The problem is to take advantage of the features offered by both
RBAC and UCON and develop security models for the global infospheres. In this project we are
examining the use of RBAC and UCON for Assured Information Sharing. We discuss some of
the issues and challenges in this appendix

2.BACKGROND

RBAC: The seminal proposal on role-based access control by Sandhu et al [SAND96] introduced
a general family of RBAC models called RBAC96. Subsequent work by Sandhu and his team, as
well as other researchers in the community, established that RBAC is capable of expressing a
wide range of policies of strong practical interest by using simple concepts. It has been
demonstrated how to do conventional discretionary and mandatory access controls using RBAC,
so RBAC truly encompasses previous access control models. Due to strong commercial interest
by vendors and users of RBAC, the model evolved into a NIST/ANSI standard model first
introduced in 2001 [FERR01] and formally adopted as an ANSI standard in 2004. The principal
idea in RBAC is that users and permissions are assigned to roles, thereby users acquire
permissions indirectly via roles (Figure 3).

UCON: The concept of Usage Control (UCON) was recently introduced in the literature by Park
and Sandhu [PARK04]. In recent years there have been several attempts to extend access control
models beyond the basic access matrix model of Lampson, which has dominated this arena for
over three decades. UCON unifies various extensions proposed in the literature in context of
specific applications such as Trust Management and Digital Rights Management. The UCON
model provides a comprehensive framework for next generation access control. A UCON system
consists of six components: subjects and their attributes, objects and their attributes, rights,
authorizations, obligations, and conditions. The authorizations, obligations and conditions are the
components of the usage control decisions. Another aspect that UCON extends traditional access
control models is the concepts of continuity and mutability (Figure 4).

3. Related Work

Since RBAC was introduced by Sandhu and his colleagues several researchers have adapted this
model for various applications. For example, Bertino et al [BERT05] have developed a temporal

 85

authorization model based on RBAC. Osborne et al [OSBO04] have developed a model for XML
documents based on RBAC. Thuraisingham has examined security for the semantic web based on
an RBAC-like model [THUR05]. Applying RBAC for a coalition environment is yet to be carried
out.

In the case of UCON model, Sandhu and his students have done pioneering work [PARK04]. For
the first time there is now a model that encompasses all the other models. Sandhu et al have also
extended UCON to handle temporal primitives. The development of UCON is still in the early
stages and its application to a coalition environment has yet to be carried out.

4. Technical Issues

RBAC: RBAC is especially relevant to the protection of information in a local infosphere as well
as in a global infosphere across a coalition. Administration of roles and cross-organizational
roles, which are central to deployment of RBAC in infospheres are not addressed in the
NIST/ANSI standard. Traditional approaches to RBAC administration often are heavyweight
involving explicit actions by human administrators. These traditional approaches where a human
is in the loop in every administrative decision are not scalable to the flexible and automated
environment of an infosphere. Recently Sandhu and his students have introduced lightweight
administration models for RBAC based on user attributes [ALKA02] and have also examined
interaction of roles and workflow [KAND02]. One needs to develop administrative models for
RBAC in infospheres with the goal of being as lightweight and seamless as possible without
compromising security.

UCON: The new expressive power brought in by UCON is very germane to the automated and
seamless security administration required in infospheres. For example, an authorization rule
permits or denies access of a subject to an object with a specific right based on the subject and/or
object attributes, such as role name, security classification or clearance, credit amount, etc. There
may be different meanings attached to the authorization rules enforced by different local
infospheres. These differences have to be reconciled. UCON is an attribute-based model, in
which permission is authorized depending on the values of subject and object attributes. In a
global infosphere, the challenge is to export policies that depend on the attribute values and the
roles. UCON model also consists of obligations and conditions. For example, playing a licensed
video file by organization A requires a user to click a notice and register in the organization’s
web page. Such an action can be required before or during the playing process. Mutability in
UCON means that a subject or object attribute value may be updated to a new value as a result of
the access. The impact of these features in a global infosphere is yet to be examined.

5. Our Approach: Role Based Access Control and Usage Control for Infospheres

Secure information sharing, within and across infospheres, requires the enforcement of persistent
access control, whereby access controls on information objects persist even as these objects reside
on computers outside the immediate control of the information source. Persistent access control
is a form of dissemination control (DCON) where the access policy to be enforced is inextricably
linked with the object as it is moved from place to place in cyberspace. There are two major
challenges in achieving this goal.

• How to enforce access controls on objects as they are physically resident on
multiple computers, including end-user client computers?

• What kinds of policies are appropriate for these situations and how should they
be specified?

 86

The first of these challenges is addressed by emerging trusted computing technologies (including
the Trusted Computing Group’s Trusted Platform Module, Intel’s LaGrande Technology and
Microsoft’s Next Generation Secure Computing Base), which are anticipated to see widespread
use in the near future. Recent work by Ravi Sandhu and his student Xinwen Zhang [ZHANG05]
in this arena has demonstrated the enforcement of persistent access control both by ensuring that
the object can be accessed only on a suitably trustworthy platform and by a suitably authorized
user. Trust in the platform is established by integrity measurement and attestation protocols.
Trust in the user is based on the user’s identity and the user’s attributes on the basis of a suitable
public-key infrastructure. These technologies are expected to be widely available commercially
in the next two to three years.

In comparison progress on the second challenge has been much slower, partly because until
recently commercially viable technologies for persistent access control were not available. Given
the recent push to bring these technologies to market the question of how to effectively use them
to facilitate controlled information sharing in a coalition environment has become much more
compelling. This second challenge is directly addressed in this project.

This project is developing a series of models for information sharing in coalitions based on Ravi
Sandhu’s pioneering work on role-based access control (RBAC) and usage control (UCON).
The space of information sharing policies is extremely rich and varied [THOM04]. We partition

Figure 1. -Role-based Access Control (RBAC96

 87

this space in two distinct dimensions so as to build these models in a systematic manner. The
first dimension distinguishes whether or not the information content in a disseminated object can
be changed as the object is further re-disseminated. There are two alternatives here as follows.

• Read-only information sharing: In this alternative the content of an object cannot be
changed as it gets disseminated. The information content remains as it was when the object was
created by its source.
• Read-write information sharing: In this alternative the content of an object does change as
it gets disseminated. There are a number of sub-cases depending on how the information can
change. One possibility is to add annotations and notes to the base content which itself does not
change. Another possibility is to redact material in the process of downgrading the security level
of the content. Further, the content may be modified by replacing portions of the original content
with new content.

.

Figure 2. UCON Components

While the read-only certainly has practical applications the main purpose for treating it separately
is to follow the dictum of “walk before you run.” By focusing first on the read-only case it is
possible to understand the issues that arise here clearly before taking on the more difficult task of
dealing with writes. This incremental approach has been very productive in previous research on
security models by Ravi Sandhu and seems to be the best approach for constructing models in a
complex space.

 88

The second dimension for partitioning the space of information-sharing policies is based on the
scale of dissemination. In this dimension we are studying the following alternatives.

• Small scale: In small-scale dissemination the number of individuals who can access an
object is of a small magnitude such as 10. This scale of dissemination is appropriate for the most
sensitive content. At this scale it hardly seems appropriate to have very complex models.
Dissemination can occur in the simple form of individual to individual (or point to point)
dissemination. Some form of basic originator control where the intent of the source if the object
is carried through a series of individual disseminations is the most appropriate policy.
Nonetheless there are significant issues that arise. These include issues of revocation, cascading
revocation, off-line access, limits on access (number of times, duration, etc.), prohibition of
access (often expressed as negative rights) and transfer-only dissemination (in contrast to copy
dissemination). These issues remain to be systematically addresses even in this small-scale
context.

• Medium scale: In medium-scale dissemination the number of individuals who can access an
object is of a larger magnitude such as 100’s or 1000’s. At this scale dissemination is best
accomplished by models based on user and object attributes such as security labels, roles and
other appropriate properties. The issues raised in small-scale dissemination continue to be
significant here as well. In addition issues of role-to-role dissemination and delegation also arise.

• Hybrid scale: Hybrid scale offers a novel combination of the above two cases proposed for
the first time in this project. The fundamental idea is that truly sensitive information needs to be
confined to a few individuals so that actual dissemination must be small scale. Nevertheless it is
impractical to achieve small-scale dissemination entirely by individual-to-individual
dissemination. This is especially so in highly dynamic and mission critical applications such as
the ones that the military faces. Information needs to be available to appropriate individuals
when they need it. Deciding who precisely these individuals are in advance is unrealistic. Our
proposal is to distinguish potential from actual dissemination. Potential dissemination is based on
roles and security labels just as in the medium scale case. Actual dissemination, however, is
based on the count of individuals who actually see the content. Thus a mission plan may be
available to all officers of a certain rank of a coalition partner, but actual access may be limited to
a small number, say, two or three. Morever during a combat situation these limits may be relaxed
so actual access is available to a larger number, such as ten or fifteen. Conversely, occurrence of
combat may limit the number even further to the one officer of appropriate rank who is on duty at
that moment. The main goal is to enforce a small-scale of actual dissemination without pre-
specifying the actual individuals who make the access, while at the same time allowing for
automatic adjustments in these policies as circumstances in the real world change. The
combination of RBAC and UCON is particularly powerful for expressing such hybrid policies.

Combining these two dimensions we get six combinations to investigate. This project is
systematically investigating this space using a combination of RBAC and UCON to develop a
series of novel models in this arena.

6. Progress
After examining both RBAC and UCON, we have selected some of the appropriate features from
both models and developed a model call RBUC (Role-based usage Control). RBUC is illustrated
in Figure 3. RBUC integrates RBAC and UCON to provide flexible access control for coalition
environment, not only has RBAC flexibility , but also has great UCON features, such as use
control, continuity of decisions and mutability of attributes.

 89

Applicability of RBUC for a coalition environment is illustrated in Figure 4. The coalition
partners maybe trustworthy), semi-trustworthy) or untrustworthy), so we can assign different
roles on the users (professor) from different infospheres, e.g.

• professor role,
• trustworthy professor role,
• semi-trustworthy professor role,
• untrustworthy professor role.

We can enforce usage control on data by set up object attributes to different roles during
permission-role-assignment, e.g.
professor role: 4 times a day,
trustworthy role: 3 times a day
semi-trustworthy professor role: 2 times a day,
untrustworthy professor role: 1 time a day

More details will be given in a forthcoming report at GMU and will be discussed in our FY07
annual report.

Figure 3. RBUC for Coalitions

Operations
(OP)

Authori
zations

(A)

●
●

Sessions
(S)
●

Object Attributes (OA)

Obliga
tions
(B)

Condi
tions
(C)

Usage
Decisions

Roles
(R)

Users
(U)

Objects
(O)

Session Attributes (SA)

User-Role Assignment
(URA)

Pemission-Role
Assignment(PRA)

Pemissions(P)

Role Hierachy(RH)

User Attributes (UA)

 90

Figure 4. RBUC for Coalitions

 professor

 professor

professor
professor

A

B(trustworthy)

C(semi-trustworthy)

D(untrustworthy)

Student record

 91

REFERENCES

[ALKAS02] Mohammad Al-Kahtani and Ravi Sandhu, “A Model for Attribute-Based User-Role
Assignment.” Proc. 17th Annual Computer Security Applications Conference, Las Vegas,
Nevada, December 9-13, 2002, pages 353-362.

[FERR01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn and Ramaswamy
Chandramouli. “Proposed NIST Standard for Role-Based Access Control.” ACM Transactions
on Information and System Security, Volume 4, Number 3, August 2001, pages 224-274.

 [KAND02] Savith Kandala and Ravi Sandhu, “Secure Role-Based Workflow Models.”
Database Security XV: Status and Prospects, (D. Spooner, editor), Kluwer 2002.

 [LIU05] Alexander Liu, Cheryl Martin, Tom Hetherington, and Sara Matzner, A Comparison of
System Call Feature Representations for Insider Threat Detection, Proceedings of the 2005 IEEE
Workshop on Information Assurance, United States Military Academy, West Point, NY June
2005

 [PARK04] Jaehong Park and Ravi Sandhu. “The UCONABC Usage Control Model.” ACM
Transactions on Information and System Security, Volume 7, Number 1, February 2004.

[PITK99] James Pitkow and Peter Pirolli. Mining longest repeating subsequences to predict
World Wide Web surfing. In Proc. of 2nd USENIX Symposium on Internet Technologies and
Systems (USITS’99).Boulder, Colorado, October 1999.

 [SAND96] Ravi Sandhu, Edward Coyne, Hal Feinstein and Charles Youman, “Role-Based
Access Control Models.” IEEE Computer, Volume 29, Number 2, February 1996.

 [THUR05] B. Thuraisingham, Security Standards for the Semantic Web, Computer Standards
and Interface Journal, March 2005.

 [THUR05d] B. Thuraisingham, Managing Cyber Threats: Issues and Challenges, Kluwer (editor:
V. Kumar et al), Kluwer, 2005.

[THOM04] Roshan Thomas and Ravi Sandhu, “Towards a Multi-Dimensional Characterization
of Dissemination Control.” Proc. 5th IEEE International Workshop on Policies for Distributed
Systems and Networks, New York, June 7-9, 2004, pages 197-200.

[ZHANG05] Xinwen Zhang and Ravi Sandhu, “Peer-to-Peer Access Control Architecture Using
Trusted Computing Technology.” Proc. 10th ACM Symposium on Access Control Models and
Technologies (SACMAT), Stockholm, June 1-3, 2005.

 92

Appendix B
Data and Applications Security Research at the
University of Texas at Dallas
Bhavani Thuraisingham

 (October 2004 – Present)

Research is proceeding in three main areas: Assured Information Sharing, Secure
Geospatial data management, and Surveillance/Biometrics. This research is the work of
my students under my supervision and direction.

Publications: Several journal publications including in IEEE Transactions on Systems,
Man and Cybernetics, Very Large Database Journal, Computer Systems Science and
Engineering, Multimedia Tools; and Conferences including ACM SACMAT, IEEE
ISORC, and IFIP Data Security. Patent applications are under discussion. Book based on
our research on Data Mining Applications is under contrct.

Area 1: Assured Information Sharing:
In the area of assured information sharing (funded mainly by AFOSR), the goal is for
organizations to share data and at the same time enforce policies. We are investigating
confidentiality, privacy, trust, integrity, provenance, standards and infrastructure aspects.
In particular, we are examining three scenarios. In the first scenario we assume that the
partners of a coalition are trustworthy (e.g, US, UK, Australia). However each partner
may want to enforce various security policies. We are investigating the use of Ravi
Sandhu’s RBAC and UCON policies for such a scenario, carrying out data mining and
conducting experimental studies as to the amount of information that is lost by enforcing
policies. We are also investigating ways to transfer our technologies to programs such as
DoD’s NCES (Network Centric Enterprise Services)

In the second scenario, we assume that the partners are semi-trustworthy. In this case, we
want to play games with the partners and extract as much information as possible without
giving out information about ourselves. We are using results from game theory to
formulate strategies for such a scenario and have obtained some interesting simulation
results. In the third scenario we assume that the partners are untrustworthy. Here, we
apply data mining to defend our systems from virus and worms and at the same time try
to probe into our partners systems, We are examining the use of honey pot technologies
and are conducting both defensive and offensive information operations.

In addition to the above areas of focus we are conducting complementary research funded
by Texas Enterpriwse Funds including in privacy preserving data mining, trust
management and negotiation, secure semantic web, data provenance management, real-
time dependable data management, risk-based access control applying markov models,
grid-based infrastructures, and secure ERP systems for coalition data sharing.

Area 1: Secure Geospatial Data Management:
In the area of secure geospatial data management (funded by Raytheon Corporation), we
are developing technologies for geospatial semantic web and data mining. We are

 93

specifying extensions to GML for access control policies as well as developing
ontologies for geospatial data. Using these ontologies we are conducting data mining. In
addition, we are also developing geospatial web services. Finally we are developing a
new language called GRDF (Geospatial Resource Description Framework) and Secure
GRDF for a geospatial semantic web. While we are developing various pieces of
technologies, our goal is to work through standards organizations such as OGC (Open
Geospatial Consortium) and corporations such as Raytheon to transfer our research to
standards and operational programs. We are members of both OGC and USGIF. We also
members of UTD’s Geosciences program.

Area 3: Surveillance/Biometrics/Sensor/RFID etc.
In the area of surveillance and biometrics (in collaboration with Unisys Corporation) our
goal is to develop technologies for detecting suspicious events as well as to maintain
privacy. We developed a surveillance system to detect suspicious events. We identified
normal events and used data mining techniques determined whether an event is
suspicious. We are investigating the use of encryption techniques to ensure privacy of the
individuals. Finally we developed access control models for surveillance data.

In the area of biometrics, we are developing technologies to support our surveillance
work including novel algorithms for face recognition and fingerprint detection. In the
areas of RFID, our goal is to manage the various RFID tags. Essentially we are designing
a system that manages these tags that may migrate and ensures security and privacy. We
are also investigating identity assurance and in particular federated identity management.
I have some Masters level students conducting research and simulation studies in secure
sensor networks.

